
POND SITING REPORT

SR 46 PD&E Study from SR 415 to CR 426

Seminole County, Florida

FPN 240216-4-28-01

April 2014

PROFESSIONAL ENGINEER CERTIFICATE

I hereby certify that I am a registered professional engineer in the State of Florida practicing with URS Corporation, a corporation, authorized to operate as an engineering business, Certificate of Authorization No. 000002, by the State of Florida, Department of Business and Professional Regulation, Board of Professional Engineers, and that I have reviewed or approved the evaluation, findings, opinions, conclusions, or technical advice hereby reported for:

Project:	SR 46 PD&E Study from SR 415 to CR 426
FPN:	240216-4-28-01
Location:	Seminole County, Florida
Client:	Seminole County and FDOT – District Five

This Pond Siting Report includes a summary of data collection efforts and conceptual drainage analyses prepared for conceptual analyses for the SR 46 PD&E Study from SR 415 to CR 426. I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of civil engineering as applied through design standards and criteria set forth by the federal, state, and local regulatory agencies as well as professional judgment and experience.

ivaille.	_	Dailli Lee, F.E.	
Signature:		Dablee	
P.E. Numb	er:	68228	
Date:		04/02/2014	
Address:	URS Cor	poration	
_		•	
	315 E. Robinson Street		
	Suite 24	15	

Orlando, FL 32801

PAGE

EXECUTIVE S	SUMMARY	1
1.0 PROJECT	Γ OVERVIEW	1-1
1.1 Purp	ose of Pond Siting Report	1-1
	G CONDITIONS	
2.1 Soils.		2-1
	Use	
	s Drains	
	ge Structures	
2.5 Flood	lplains/Floodways	2-9
2.6 Envir	ronmental Characteristics	2-9
	ltural Resources	
	etlands	
	reatened and Endangered Species	
•	ical Environment – Contamination	
	ing Drainage Conditions	
3.0 PROPOSI	ED CONDITIONS	3-1
	Use	
	s Drains	
	ge Structures	
	lplain/Floodways	
	ronmental Characteristics	
	ltural Resources	
	etlands	
	reatened and Endangered Species	
V 1	cal Sections	
_	osed Drainage	
	sin A	
	sin 1	
	sin 2sin B	
	sin C	
	sin D	
	sin E	
	sin F	
	sin G	
	Basin H	
	Maximum Daily Loads (TMDL)	
4.0 CONCLU		

<u>EXHIBITS</u>	PAGE
Exhibit 1-1 Project Location Map	1-3
Exhibit 2-1 Existing Typical Section	
Exhibit 2-2 USDA NRCS Soil Map (1 of 2)	
Exhibit 2-3 USDA NRCS Soil Map (2 of 2)	2-4
Exhibit 2-4 Existing Land Use Map	
Exhibit 2-5 Future Land Use Map	
Exhibit 3-1 Rural Typical Section – Widen to the North	
Exhibit 3-2 Rural Typical Section – Widen to the South	
Exhibit 3-3 Surburban Typical Section – Widen to the North	
Exhibit 3-4 Surburban Typical Section – Widen to the South	
Exhibit 3-5 Urban Typical Section – Centered Widening	
Exhibit 3-6 Bridge Typical Section without Shared Use Path Exhibit 3-7 Bridge Typical Section with Shared Use Path	
Table 1-1 Summary of Existing Cross Drains Table 1-2 Pond Alternatives Evaluation Matrix Table 2-1 Existing Soil Types. Table 2-2 Summary of Existing Cross Drains Table 2-3 Potential Contamination Sites Table 3-1 Build Alternatives. Table 3-2 Pre-Development and Post-Development TMDL Table 4-1 Summary of Pond Recommendations	
APPENDICES APPENDIX A – FEMA FIRM Maps	
APPENDIX B – USGS Quadrangle Maps	
APPENDIX C – FDOT Straight Line Diagrams	
APPENDIX D – Correspondence	
APPENDIX E – Design Criteria	
APPENDIX F – Pond Sizing Calculations APPENDIX G – Pond Alternatives Location Plans	

EXECUTIVE SUMMARY

Seminole County and the Florida Department of Transportation (FDOT) District 5 have initiated a Project Development and Environment Study (PD&E) to widen State Road 46 (SR 46) from a two lane rural roadway to a four lane divided facility from East of SR 415 to CR 426 in Seminole County, Florida. The purpose of the proposed improvements is to improve the mobility in the SR 46 corridor to accommodate future projected traffic demand in the Design Year (2035) safely and efficiently. The study will develop and evaluate concepts that address traffic operations. The study will also evaluate the anticipated impacts and costs for each concept.

The purpose of this pond siting report is to discuss the stormwater management plan for the project. This report identifies pond locations, discusses right-of-way requirements, and possible mitigation costs associated with each pond location.

Existing Drainage Conditions

SR 46 is located within the jurisdiction of the SJRWMD. According to the USGS quadrangle maps, the approximate ground surface elevation within the project limits range from as low as approximately +5 feet to high as approximately +75 feet. The elevations are based on 1929 National Geodetic Vertical Datum (NGVD). The project limits lie within the Middle St. Johns River Basin of which Lake Jesup is a tributary. The Middle St. Johns River Basin is considered an open basin that discharges to the St. Johns River, which is not considered an Outstanding Florida Waters (OFW). However, the Florida Department of Environmental Protection (FDEP) has adopted Total Maximum Daily Loads (TMDL) for both nitrogen and phosphorus for any basin discharging to the St. Johns River above Lake Jesup near St. Johns River, the St. Johns River above Lake Harney.

The original construction of SR 46 crosses several floodplain areas longitudinally. The floodplain locations were determined using the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) for Seminole County, Florida and incorporated areas. The following Community-Panel Numbers were used in reference:

- 12117C0090F
- 12117C0095F
- 12177C0185F
- 12117C0205F

FEMA FIRM identified three floodplain zones present within the limits of this project. These zones are defined as follows:

- Zone AE Base flood elevation determined (Elev. 9.0 ft, NAVD)
- Zone AE Base flood elevation determined (Elev. 29.0 ft, NAVD)
- Zone A No base flood elevation determined

Effective dates of these panels are September 28, 2007 (See Appendix A).

Existing land use along the project corridor west of the bridge and north of SR 46, the Bergmann Tract land is zoned vacant (other). West of the bridge and south of SR 46, the land is zoned agricultural, residential, and conservation. Existing land use along the project corridor east of the bridge is primarily residential single family. The parcels owned by the City of Sanford (Site 10) east of the bridge and south of SR 46 are zoned agricultural. Commercial land uses are clustered around the intersections of SR 46 with SR 415 and CR 426. Existing land use is shown on **Exhibit 2-4**. The future land use for the project area is shown on **Exhibit 2-5**. This project is consistent with the future land use identified in the Seminole County Comprehensive Plan.

In general, stormwater discharged from SR 46 is not treated within the project limits. The existing typical section of SR 46 is crowned and the travel lanes and outside shoulders slope to the outside into existing roadside ditches. The roadside ditches then convey the stormwater runoff to several existing cross drains. The cross drains then conveys the runoff into various wetland areas found within the project limits, which ultimately discharge to the St. Johns River. A summary of existing cross drains are shown in **Table 1-1**.

Table 1-1 – Summary of Existing Cross Drains

	SUMMARY OF EXISTING CROSS DRAINS							
Structure No.	Station	Туре	Size	Flow Line Left	Flow Line Right	Comments		
CD-1	9+24	RCP	24''	12.56	10.72	Removed		
CD-2	188+62	RCP w/ PVC Liner	24''	13.70	13.00			
CD-3	201+61	RCP w/ PVC Liner	24''	14.00	13.80			
CD-4	226+60	СВС	(2) 8'x3'	13.00	13.20			
CD-5	276+60	RCP w/ PVC Liner	(2) 24"	20.20	20.40			
CD-6 CD-7	296+64 310+52	RCP w/ PVC Liner RCP w/ PVC Liner	24" 24"	20.50	20.00			
CD-8	326+73	RCP w/ PVC Liner	24''	25.10	31.60			
CD-9	384+60	RCP w/ PVC Liner	18''	58.50	58.40			

The only area currently treated is within the limits of the bridge replacement project, over Lake Jesup, which was constructed in 2009. The new bridge and approaches are being treated by existing stormwater treatment wet detention pond(s) 1 and 2. The ponds are located west and east of the bridge, respectively. Stormwater runoff from the high point of the bridge to the west end of the project is collected and conveyed to existing Pond 1 by a series of shoulder gutter inlets and ditch bottom inlets. Stormwater runoff from the high point of the bridge to the east end of the project is collected and conveyed to existing Pond 2 by a series of bridge scuppers, shoulder gutter inlets, and ditch bottom inlets. The bridge scuppers are connected to fiber reinforced concrete pipes that hang beneath the south side of the bridge.

Proposed Drainage Conditions

This study anticipates the stormwater runoff for the proposed SR 46 widening will be collected via a series of curb and gutter inlets. The existing profile grade in several areas along the project limits is nearly flat. During the design phase, special gutter profiles may be required if widening from the existing pavement results in less than the minimum required 0.3% gutter grades. Stormwater runoff from the proposed bridge, high point to eastern limits, will be collected via a series of bridge scuppers and piped into the stormwater treatment pond. Offsite drainage areas, which are unable to be collected in the onsite system due to hydraulic constraints, will be bypassed and conveyed via pipes that discharge to the existing outfall locations. During the design phase, a thorough evaluation of the potential to comingle offsite and onsite runoff into a single collection system should be performed in an effort to minimize conveyance system costs.

As stated before, the sub-basin limits were typically defined as the area between two cross drains. During the design phase, there may be opportunities to reduce the number of ponds required by combining sub-basins. However, this depends on the pond depth being able to accommodate the SR 46 stormsewer system routed underneath the existing cross drains.

SR 46 is located within the jurisdiction of the SJRWMD. The project limits lie within the Middle St. Johns River Basin of which Lake Jesup is a tributary. The Middle St. Johns River Basin is considered an open basin that discharges to the St. Johns River, which is not considered an OFW. However, the Florida Department of Environmental Protection (FDEP) has adopted Total Maximum Daily Loads (TMDL) for both nitrogen and phosphorus for any basin discharging to the St. Johns River above Lake Monroe, Lake Jesup near St. Johns River, the St. Johns River above Lake Jesup, and the St. Johns River above Lake Harney. See **Section 3.9** for more details regarding TMDL analysis. Also, 100-year floodplains are found within the project limits with the majority being located around the bridge over Lake Jesup. See **Section 3.5** for more details regarding 100-year floodplain analysis.

To determine feasible pond locations, the following procedures were used:

- Establish sub-basins and determine existing outfall locations. The majority of the sub-basins have been divided between existing cross drains.
- Soil conditions and geotechnical subsurface ground water elevations were evaluated to determine the type of stormwater treatment facility (i.e. wet or dry pond). The estimated seasonal high water table (ESWHT) elevations were established based on the preliminary roadway soil survey performed by Ardaman & Associates, permitted conditions for existing Pond(s) 1 & 2 (Bridge Replacement project; SJRWMD Permit No. 40-117-95925-5), and permitted conditions for existing Pond 101 (Sterling Meadows Subdivision; SJRWMD permit No. 4-117-5166-2). The bottom elevations for all dry ponds were set at a minimum of 18" above the ESHWT elevation.
- Existing ground elevations were determined by using Seminole County GIS Lidar Data, 1 foot contours.
- Based on SJRWMD, water quality (treatment) and water quantity (attenuation) criteria were determined. Please refer to **Appendix E** for design criteria.

- All ponds were sized with the capacity to retain the required treatment volume plus the Post-Pre attenuation volume (25 year / 24 hour) with 1 foot of freeboard to the inside berm elevation. Please refer to calculations in **Appendix F**.
- Hydraulic Grade Line (HGL) elevations were compared to roadway elevations in each basin to develop the allowable pond stages. The estimated stormsewer tailwater elevation was assumed to be the pond stage at the 3 year / 24 hour Post-Pre attenuation volume (closed system) plus the required treatment volume.
- The FDOT Critical Storm of 100 year / 72 hour, for open basins, was used to determine the required Post-Pre attenuation volume in basins where there has been record of flooding. This applies to Basin C & D.
- 100-year floodplain impacts will be compensated by Floodplain Compensation Pond(s) 1 & 2 and roadside ditches. Floodplain compensation will be based on any cut volume between the 100-year floodplain elevation and the ESHWT elevation at each pond and ditch location.
- Post development TMDLs will be equal to or less than Pre development TMDLs for all basins discharging to the St. Johns River above Lake Monroe, Lake Jesup near St. Johns River, the St. Johns River above Lake Jesup, and the St. Johns River above Lake Harney.

All wet ponds were sized with a 15.0 ft maintenance berm (1:15 or flatter). Side slopes of 1:4 to two feet below the seasonal high water table, and then a 1:2 slope to the proposed pond bottom. All dry ponds were sized with a 15.0 ft maintenance berm (1:15 or flatter) and side slopes of 1:4 to the proposed pond bottom.

Summary

Alternative pond sites have been identified along the project limits. The analysis estimates right-of-way needs using volumetric analysis, which accounts for water quality treatment and water quantity for runoff attenuation. The right-of-way cost estimates found in this report is a budget tool that can be used by Seminole County and FDOT District 5 to estimate total acquisition costs associated with each pond alternative and to budget the appropriate funds for acquisition. Right-of-way cost estimates are not real estate appraisals and do not reflect market values.

Pond sizing calculations as well as graphics showing the roadway alignment and associated pond site alternatives are included in **Appendix F** and **Appendix G**, respectively, of this Pond Siting Report. Please note that the recommendations were based on pond sizes and locations determined from preliminary calculations, reasonable engineering judgment, and assumptions. Pond sizes and locations may change during the final design as more detailed information on ESHWT elevations, wetland normal pool elevations, final roadway profile design, and confirmed TMDL requirements, etc. become available. **Table 1-2** shows the Pond Alternatives Evaluation Matrix and the following states the reason(s) why the preferred pond sites were selected for each sub-basin.

Basin A

Pond A3 is the preferred alternative because it requires less mitigation effort. Alternative Pond(s) A1 and A2 are located within a multi-owned conservation easement, while Pond A3 is located within a single conservation easement owned by the SJRWMD. Also, Pond A3 does not require a proposed drainage easement for the pond outfall location, which results in less right-of-way acquisition and wetland impacts.

Basin 1

Modification of existing Pond 1 was the only pond alternative evaluated for this basin, which requires the least amount of additional pond right-of-way. Existing Pond 1 will be expanded to provide additional stormwater treatment and attenuation for the proposed roadway improvements.

Basin 2

Modification of existing Pond 2 was the only pond alternative evaluated for this basin, which requires the least amount of additional pond right-of-way. Existing Pond 2 will be expanded to provide additional stormwater treatment and attenuation for the proposed roadway improvements.

Basin B

Pond B1 is the preferred alternative because the area is located within the remnant parcel that will be purchased for the proposed roadway improvements. This pond can also utilize the existing ditch located on the south side of West Osceola Road for its outfall location before ultimately discharging into the St. Johns River.

Basin C

Pond C1 is the preferred alternative because this site does not require any relocation of existing residents as compared to alternative Pond C2. Also, this site will have less wetland impacts as compared to alternative Pond C3.

Basin D

Pond D1 is the preferred alternative because this site does not require a separate system for the pond outfall. Also, this site would allow for the proposed improvements to resolve the drainage issue on the downstream side of CD-5 by re-grading the existing ditch to provide positive drainage into the adjacent wetland. The re-graded ditch could also potentially provide compensation for the reduction in floodplain impacts created by the construction of the proposed pond.

Basin E

Pond E2 is the preferred alternative because this site has a higher potential of resulting in no impacts to the 100-year floodplain as compared to alternative Pond E3. In addition, during the design phase the proposed 25 ft drainage easement could potentially be eliminated by conveying the pond outfall in a separate system that would discharge to the downstream side of CD-6 which would result in no wetland impacts.

Basin F

Pond F2 is the preferred alternative because the proposed 25 ft drainage easement required for the pond outfall will have less wetland impacts than the required easement associated with Pond F3. Also, this proposed pond site and easement will only impact one parcel compared to two parcels required for Pond F3.

Basin G

Pond G2 is the preferred alternative because there is less variation in the existing ground elevations at this proposed pond site than alternative Pond G3, which should made construction of the pond less difficult. Also, there is an existing spring in the vicinity of the Pond G3 site where the exact location has not been determined.

Basin H

Pond H1 is the preferred alternative because there will be no impacts to wetlands as compared to alternative Pond H3 and no business damages as compared to alternative Pond H2.

Table 1-2 - Pond Alternatives Evaluation Matrix

Pond Site Alternative	Pond Size Required including easements & access (acres)	Total Parcel Required (acres)	FEMA Flood Zone	Wetland Impacts (acres)	Arch. / Historical Impact Potential	Environmental Impact Risk	Threatened or Endangered Species Impacts	Hazardous Materials & Contamination Potential	Social Impact	Major Utility Conflict Potenial (Y/N)	Existing Land Use	Future Land Use	Total Pond Costs	Rankings
Pond A1	8.84	8.84	AE	8.84	Low	High	Medium	None	Low	N	Wet Prairies	Preservation/ Managed Lands	\$1,586,017.29	2
Pond A2	8.84	8.84	AE	8.84	Low	High	Medium	None	Low	N	Mixed Scrub - Shrub Wetland	Preservation/ Managed Lands	\$1,743,571.63	3
Pond A3	8.42	8.42	AE	8.42	Low	High	Medium	None	Low	N	Wet Prairies	Preservation/ Managed Lands	\$1,664,589.66	1
Pond B1	6.00	6.00	Х	1.37	Low	Medium	Medium	None	Low	N	Wetland Forested Mixed	Rural/5	\$858,560.89	1
Pond B2	5.96	5.96	Х	0.00	Low	Low	Low	None	Low	N	Improved Pastures	Public/Quasi- Public	\$697,272.20	2
Pond B3	6.12	6.12	Α	0.50	Low	High	High	None	Low	N	Pine Flatwoods	Rural/5	\$1,146,396.40	3
Pond C1	4.08	4.08	Х	0.29	Low	Medium	Low	None	Low	N	Woodland Pastures	Rural/5	\$2,734,136.29	1
Pond C2	4.16	4.16	Х	0.00	Low	Low	Low	None	Low	N	Woodland Pastures	Rural/5	\$822,139.57	2
Pond C3	4.16	4.16	Α	4.16	Low	High	Medium	None	Low	N	Freshwater Marshes	Public/Quasi- Public	\$847,860.66	3
Pond D1	2.00	2.00	Α	0.00	Medium	Low	Low	None	Low	N	Residential, Rural	Rural/5	\$440,880.39	1
Pond D2	1.99	1.99	Х	0.00	Medium	Low	Low	None	Low	N	Improved Pastures	Rural/5	\$316,184.05	2
Pond D3	1.99	1.99	Α	0.00	Medium	Low	Low	None	Low	N	Freshwater Marshes	Rural/5	\$429,489.97	3
Pond E2	2.07	2.07	AE	0.10	Medium	Medium	Low	Low	Low	N	Rural Land in Transition	Rural/5	\$309,210.32	1
Pond E3	1.97	1.97	А	0.02	Medium	Medium	Medium	None	Low	N	Wetland Forested Mixed	Rural/5	\$274,889.26	2
Pond F2	1.54	1.54	Х	0.03	High	Low	Low	Low	Low	N	Rural Land in Transition	Rural/5	\$233,810.84	1

Table 1-2 - Pond Alternatives Evaluation Matrix

Pond Site Alternative	Pond Size Required including easements & access (acres)	Total Parcel Required (acres)	FEMA Flood Zone	Wetland Impacts (acres)	Arch. / Historical Impact Potential	Environmental Impact Risk	Threatened or Endangered Species Impacts	Hazardous Materials & Contamination Potential	Social Impact	Major Utility Conflict Potenial (Y/N)	Existing Land Use	Future Land Use	Total Pond Costs	Rankings
Pond F3	1.74	1.74	Х	0.13	High	Medium	Medium	None	Low	N	Upland Mixed Coniferous/ Hardwood	Rural/5	\$256,317.16	2
Pond G2	3.16	3.16	Х	0.00	Low	Low	Low	None	Low	N	Sand and Gravel Pits	Rural/5	\$295,729.09	1
Pond G3	3.49	3.49	Х	0.00	High	Low-Medium	Low-Medium	None	Low	N	Upland Mixed Coniferous/ Hardwood	Rural/5	\$358,586.31	2
Pond H1	2.89	2.89	Х	0.00	High	Low	Low	None	Low	N	Pine Flatwoods	Rural/5	\$402,317.56	1
Pond H2	2.96	2.96	Х	0.00	Medium	Low	Low	Low	Low	N	Pine Flatwoods	Rural/5	\$1,512,437.96	2
Pond H3	2.98	2.98	Х	0.02	High	Low	Low	None	Low	N	Pine Flatwoods	Rural/5	\$1,933,872.93	3
MOD Pond 1	1.02	1.02	AE	1.00	Low	Medium	Medium	None	Low	N	Cabbage Palm Hammock	Preservation/ Managed Lands	\$282,194.86	1
MOD Pond 2	1.72	1.72	AE	0.00	High	Low	Low	None	Low	N	Upland Mixed Coniferous/ Hardwood	Rural/5	\$391,552.79	1
FP Comp 1	8.15	8.15	AE	0.00	High	Medium	Medium	None	Low	N	Upland Mixed Coniferous/ Hardwood	Planned Development	\$1,373,710.43	1
FP Comp 2	26.96	26.96	AE	3.81	High	Medium-High	High	None	Low	N	Upland Mixed Coniferous/ Hardwood	Rural/5	\$3,462,443.69	1

Note: The cost evaluation for the stormwater management facility alternatives in this report includes stormwater management facility construction costs, costs associated with wetland impacts, and parcel acquisition costs. The stormwater management facility construction costs includes cost of installed drainage structures, drainage pipes and outfalls, clearing and grubbing, earthwork excavation and grading, berm construction, fencing, access accommodations, and sodding. The associated parcel acquisition costs for each alternative evaluated includes the estimated cost of land and any impacted improvements, administrative costs, and legal fees.

1.0 PROJECT OVERVIEW

Seminole County and the Florida Department of Transportation (FDOT) District 5 have initiated a Project Development and Environment Study (PD&E) to widen State Road 46 (SR 46) from a two lane rural roadway to a four lane divided facility from East of SR 415 to CR 426 in Seminole County, Florida. The purpose of the proposed improvements is to improve the mobility in the SR 46 corridor to accommodate future projected traffic demand in the Design Year (2035) safely and efficiently. Exhibit 1-1 shows the project location and study limits.

1.1 Purpose of Pond Siting Report

This Pond Siting Report (PSR) provides an analysis of potential pond sites along SR 46 for Seminole County and the FDOT. The analysis estimates right-of-way requirements using a volumetric analysis, which accounts for water quality (treatment) and water quantity (attenuation) requirements.

A variety of factors are used to determine right-of-way requirements for each potential pond site. The following factors were used:

- Required treatment volume and attenuation volume
- Soil types and water table
- Wetland limits
- Floodplain limits
- Threatened and endangered species
- Cultural and historical sites
- Property lines
- Location of site with respect to outfall location

Resources used for this report include the following:

- Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) for Seminole County and incorporated areas. The following Community-Panel Numbers, with an effective date of September 28, 2007, were used: 12117C0090F, 12117C0095F, 12117C0185F, and 12117C0205F (Refer to **Appendix A**).
- U.S. Department of Agriculture (USDA) Natural Resources Conservation Service Soil Survey of Seminole County (1990).
- U.S. Geological Survey (USGS) Quadrangle Maps T19S-R31E, T20S-R31E, and T20S-R32E (Refer to **Appendix B**).
- FDOT Construction Plans of SR 46, Financial Project ID No(s): 240163-1-52-01, 240216-2-52-01, 407355-1-52-01, 417178-1-52-01, and 7704-105.

- Centex Homes Construction Plans of Sterling Meadows, SJRWMD Permit No. 4-117-51666-2.
- FDOT Straight Line Diagram of Road Inventory (Refer to **Appendix C**).
- Seminole County GIS Database for floodplains.
- Seminole County GIS Lidar Data, 1 foot contours.
- Correspondence (Refer to **Appendix D**).
- Field investigation.

SEMINOLE VOLUSIA COUNTY 415 To Sanford SEMINOLE Mullet Lake Park Rd Orlando-Sanford International Airport North Lake Jesup Conservation Area (SJRWMD) Cochran Rd East Lake Jesup Conservation Area (SJRWMD) 46 Main Street Geneva Lake Jesup End Project

Exhibit 1-1 - Project Location Map

2.0 EXISTING CONDITIONS

SR 46 is classified as a Rural Principal Arterial within the project limits. The portion of SR 46 included in this Pond Siting Report has limits from East of SR 415 to CR 426 in Seminole County, a distance of approximately 7.4 miles. Within the project limits, the existing typical roadway section of SR 46 (See **Exhibit 2-1**) consists of a rural section with two 12-foot lanes and 6-foot (4-foot paved) outside shoulders.

EXISTING RAW

RAW VARIES (50' MINL)

RAW VARIES (50' MINL)

F SHOR PAVI.

RATURAL GROUND

12 5 SHOR PAVI.

RATURAL GROUND

Exhibit 2-1 – Existing Typical Section

2.1 Soils

Geotechnical information reviewed for this report included the 1990 Soil Survey for Seminole County, Florida, as prepared by the U.S. Department of Agriculture Natural Resources Conservation Service. **Table 2-1** lists the existing soil types present in the project area and corresponds to the figures presented in **Exhibit 2-2** and **Exhibit 2-3**.

Table 2-1 – Existing Soil Types

Symbol	Soil Type
3	Arents, 0 to 5% slopes
9	Basinger and Delray fine sands
10	Basinger, Samsula and Hontoon soils,
10	depressional
11	Basinger and Smyrna fine sands,
11	depressional
12	Canova and Terra Ceia mucks
13	EauGallie and Immokalee fine sands
15	Felda and manatee mucky fine sands,
13	depressional
16	Immokalee sand
17	Brighton, Samsula and Sanibel mucks
18	Malabar fine sand
19	Manatee, Floridana and Holopaw soils,
19	frequently flooded
20	Myakka and EauGallie fine sands
21	Nittaw mucky fine sand, depressional
22	Nittaw muck, occasionally flooded
23	Nittaw, Okeelanta and Basinger soils,
	frequently flooded
25	Pineda fine sand
26	Udorthents, excavated
27	Pomello fine sand, 0 to 5% slopes
29	St. Johns and EauGallie fine sands
33	Terra Ceia muck, frequently flooded
35	Wabasso fine sand
99	Water

Exhibit 2-2 – USDA NRCS Soil Map (1 of 2)

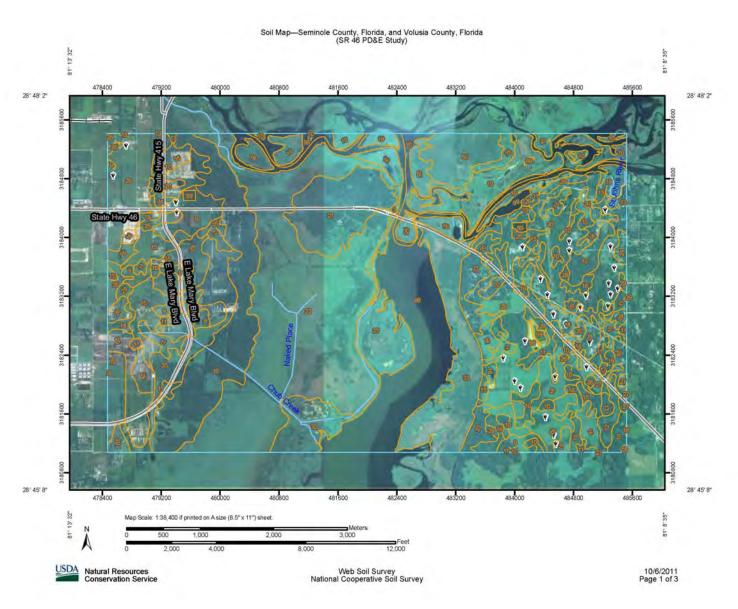
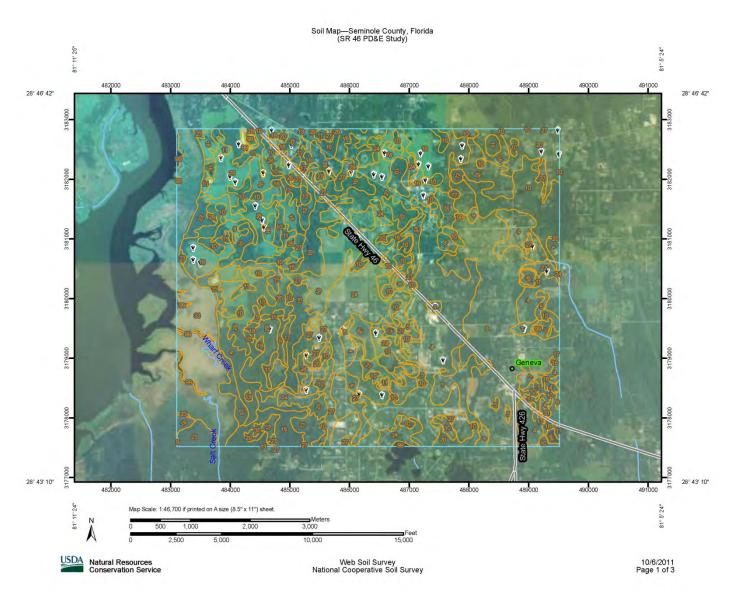



Exhibit 2-3 – USDA NRCS Soil Map (2 of 2)

2.2 Land Use

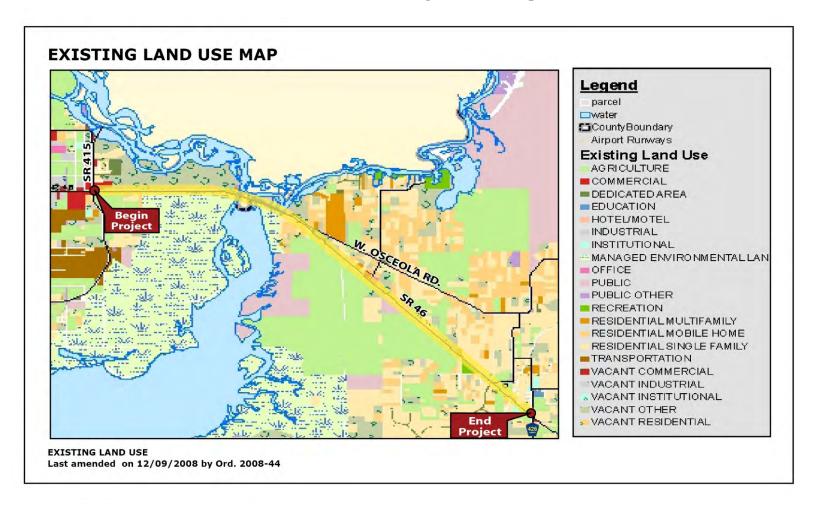
Existing land use along the project corridor west of the bridge and north of SR 46, the Bergmann Tract land is zoned vacant (other). West of the bridge and south of SR 46, the land is zoned agricultural, residential, and conservation. Existing land use along the project corridor east of the bridge is primarily residential single family. The parcels owned by the City of Sanford (Site 10) east of the bridge and south of SR 46 are zoned agricultural. Commercial land uses are clustered around the intersections of SR 46 with SR 415 and CR 426. Existing land use is shown on **Exhibit 2-4**. The future land use for the project area is shown on **Exhibit 2-5**. This project is consistent with the future land use identified in the Seminole County Comprehensive Plan.

2.3 Cross Drains

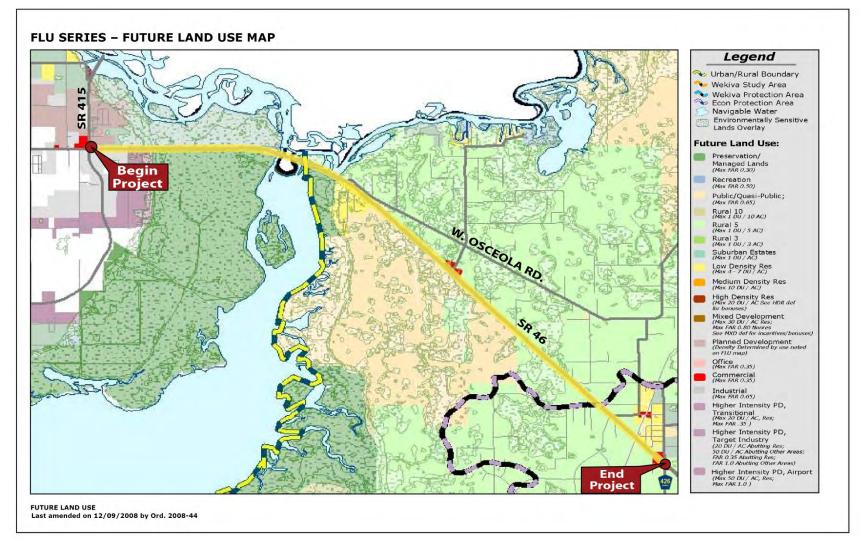
There are a total of 9 cross drains within the limits of this project ranging from 18" RCP to double 8' X 3' CBC (See **Table 2-2**). All these existing cross drains have been numbered and are shown on the Pond Alternatives Location Plans (Refer to **Appendix G**). There is also one existing bridge over Lake Jesup that was recently constructed in 2009. As part of the proposed roadway improvements, a parallel bridge will be constructed on the north side of the existing bridge.

According to the FDOT Maintenance Department, all of the cross drains are in good physical condition; however, there are two locations where there has been record of flooding problems on the downstream side of the cross drains. The first location being in the vicinity of CD-4, north of SR 46 and east of Mullet Lake Park Road. The FDOT Maintenance Department believes that the flooding problem exists in this area due to the lack of positive drainage grading located through downstream private properties and the ultimate outfall of the conveyance system leading into the St. Johns River. The second location being in the vicinity of CD-5, north of SR 46 and east of Mockingbird Lane. The FDOT Maintenance Department believes that the flooding problem exists in this area due to the lack of positive drainage grading located within the downstream private property into which the cross drain discharges before entering the wetland located within this property. The FDOT Maintenance Department does not believe that the existing cross drains are undersized in these locations, but the problems exist due to the lack of positive drainage grading within downstream private properties and that the problems cannot be fixed without some type of drainage easement. (Appendix D shows records of telephone conversations). The fact that the flooding occurs on the downstream side of the existing cross drains would indicate that the size of the existing cross drains are most likely not the cause of the flooding.

Field investigation was also conducted for all the existing cross drains within the project limits. Field inspection revealed a discrepancy with the FDOT Straight Line Diagram of Road Inventory for CD-4. The inventory shows this cross drain as a double 8' X 2' CBC, but field measurements indicate this cross drain is actually a double 8' X 3' CBC. Several of the cross drains contain PVC liners due to minor leaking at the joints according to the FDOT Maintenance Department. The FDOT Maintenance Department


also stated that replacement of the existing cross drains should be examined to meet the design service life projected within this PD&E Study.

The existing cross drains were analyzed using FHWA's HY-8 program and the discharges were calculated using FDOT's velocity method. Detailed calculations for all existing cross drain can be found in the **SR 46 PD&E Location Hydraulics Report**.


Table 2-2 – Summary of Existing Cross Drains

	SUMMARY OF EXISTING CROSS DRAINS							
Structure No.	Station	Туре	Size	Flow Line Left	Flow Line Right	Comments		
CD-1	9+24	RCP	24''	12.56	10.72	Removed		
CD-2	188+62	RCP w/ PVC Liner	24''	13.70	13.00			
CD-3	201+61	RCP w/ PVC Liner	24''	14.00	13.80			
CD-4	226+60	СВС	(2) 8'x3' (2)	13.00	13.20			
CD-5	276+60	RCP w/ PVC Liner	24''	20.20	20.40			
CD-6	296+64	RCP w/ PVC Liner	24''	20.50	20.00			
CD-7	310+52	RCP w/ PVC Liner	24''	20.00	20.10			
CD-8	326+73	RCP w/ PVC Liner	24''	25.10	31.60	_		
CD-9	384+60	RCP w/ PVC Liner	18''	58.50	58.40	_		

Exhibit 2-4 Existing Land Use Map

Exhibit 2-5 Future Land Use Map

2.4 Bridge Structures

There is one bridge within the project limits. The bridge over Lake Jesup / St. Johns River was constructed in 2009, is in good condition. The bridge spans three historic channels of the St. Johns River. Channel A (approximate Station 105+00) is the existing channel into Lake Jesup from the St. Johns River. Channel B, at approximately Station 114+00, is defined as the historic route of the St. Johns River that was filled in as part of the construction of the causeway that was removed as part of the bridge construction. Channel C, an eastern channel from the St. Johns River to Lake Jesup filled in by past river dredging projects, is located at approximately Station 135+00.

2.5 Floodplains/Floodways

The original construction of SR 46 crosses several floodplain areas longitudinally. The floodplain locations were determined using the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) for Seminole County, Florida and incorporated areas. The following Community-Panel Numbers were used in reference:

- 12117C0090F
- 12117C0095F
- 12177C0185F
- 12117C0205F

FEMA FIRM identified three floodplain zones present within the limits of this project. These zones are defined as follows:

- Zone AE Base flood elevation determined (Elev. 9.0 ft, NAVD)
- Zone AE Base flood elevation determined (Elev. 29.0 ft, NAVD)
- Zone A No base flood elevation determined

Effective dates of these panels are September 28, 2007 (Refer to **Appendix A**).

2.6 Environmental Characteristics

2.6.1 Cultural Resources

A Cultural Resource Assessment Survey (CRAS) was conducted by Janus Research. Please refer to the **SR 46 PD&E Study CRAS** for more detailed information.

2.6.2 Wetlands

A Wetland Evaluation Report (WER) was performed by EMD. Please refer to the **SR 46 PD&E Study WER** for more detailed information.

2.6.3 Threatened and Endangered Species

An Endangered Species Biological Assessment (ESBA) report was performed by EMD. Please refer to the **SR 46 PD&E Study ESBA** report for more detailed information.

2.7 Physical Environment – Contamination

Forty-one properties within the project area were assessed for potential contamination and assigned risk ratings. Of these 41 properties, 12 were assigned potential contamination risk ratings of low, medium or high. These 12 properties are listed in **Table 2-3**.

ID	Name	Address	Risk Rating
1	RaceTrac	4115 SR 46 E	Low
2	Joyce Well Drilling (former location)	4125 E HWY 46	Low
3	The Pantry, Inc. (gas station)	4140 E SR 46 (@ SR 415)	High
4	Residence/Complete Well & Pump Service	4565 SR 46 E	Low
5	Former Trombley's Auto Body	2740 SR 46 W	High
6	Lake Jesup Groves Maintenance Area	2017 SR 46 W	Medium
7	Former Landscape Supply/Nursery	Not Listed	Low
8	Former Mining/Borrow Pit	Not Listed	Low
9	Focal Point Landscape Supplies – Nursery Area	145 SR 46 W	Low
10	Geneva Food Store/MJM Food Store	140 SR 46 W	Medium
11	Kangaroo Express/Handy Way 2655	173 1 st St.	Low
12	Chuck's Automotive Repair	145 E. SR 46	Low

Table 2-3 – Potential Contamination Sites

2.8 Existing Drainage Conditions

SR 46 is located within the jurisdiction of the SJRWMD. According to the USGS quadrangle maps, the approximate ground surface elevation within the project limits range from as low as approximately +5 feet to high as approximately +75 feet. The elevations are based on 1929 National Geodetic Vertical Datum (NGVD). The project limits lie within the Middle St. Johns River Basin of which Lake Jesup is a tributary. The Middle St. Johns River Basin is considered an open basin that discharges to the St. Johns River, which is not considered an Outstanding Florida Waters (OFW). However, the Florida Department of Environmental Protection (FDEP) has adopted Total Maximum Daily Loads (TMDL) for both nitrogen and phosphorus for any basin discharging to the St. Johns River above Lake Monroe, Lake Jesup near St. Johns River, the St. Johns River above Lake Jesup, and the St. Johns River above Lake Harney. Also, 100-year floodplains are found within the project limits with the majority being located around the bridge over Lake Jesup.

In general, stormwater discharged from SR 46 is not treated within the project limits. The existing typical section of SR 46 is crowned and the travel lanes and outside shoulders slope to the outside into existing roadside ditches. The roadside ditches then convey the stormwater runoff to several existing cross drains. The cross drains then

conveys the runoff into various wetland areas found within the project limits, which ultimately discharge to the St. Johns River.

The only area currently treated is within the limits of the bridge replacement project, over Lake Jesup, which was constructed in 2009. The new bridge and approaches are being treated by existing stormwater treatment wet detention pond(s) 1 and 2. The ponds are located west and east of the bridge, respectively. Stormwater runoff from the high point of the bridge to the west end of the project is collected and conveyed to existing Pond 1 by a series of shoulder gutter inlets and ditch bottom inlets. Stormwater runoff from the high point of the bridge to the east end of the project is collected and conveyed to existing Pond 2 by a series of bridge scuppers, shoulder gutter inlets, and ditch bottom inlets. The bridge scuppers are connected to fiber reinforced concrete pipes that hang beneath the south side of the bridge.

3.0 PROPOSED CONDITIONS

3.1 Soils

A preliminary geotechnical investigation was performed to conceptually evaluate roadway and stormwater management constraints. Specifically, the purpose of this preliminary geotechnical investigation was to evaluate subsurface conditions at the alternative stormwater pond and swale sites for the proposed SR 46 widening. No borings were performed for the roadway. This information was used to develop preliminary recommendations regarding the geotechnical engineering aspects of the roadway, pond, and swale alternatives.

The geotechnical investigation includes one boring per preferred pond site and alternative swale locations. Geotechnical parameters were established to determine the existing ground water elevations, estimated seasonal high water table (ESHWT) elevations, and permeability rates per boring location. For detailed geotechnical data, refer to the **Preliminary Geotechnical Investigation Report**.

The soil classifications for this project will not change as a result of the proposed improvements.

3.2 Land Use

The Land Use for this project will not change as a result of the proposed improvements.

3.3 Cross Drains

As previously stated, there are a total of 9 cross drains within the limits of this project ranging from 18" RCP to double 8' X 3' CBC. The proposed SR 46 widening will impact all the cross drains.

West of the St. Johns River Bridge, there is only one cross drain (CD-1) which will be eliminated once the proposed improvements are complete at the intersection of SR 415 and SR 46 under the FDOT FPID 240216-2-52-01 project.

East of the St. Johns River Bridge, the existing cross drains (CD-2 thru CD-8) were analyzed based on the worst case scenario only, which is the Rural Best Fit Option. The Rural Best Fit Option will require a greater extension length of the cross drains as compared to the Suburban Best Fit Option. The rural typical section will require the proposed length of the cross drains to be approximately 170 feet in length and will also result in a lower outside edge of pavement elevation due to the widening of SR 46. As a result, several of the cross drains will need to be upsized to maintain an allowable headwater elevation. The remaining cross drains will be replaced in kind to meet the design service life projected within this PD&E Study.

Between Hart Road to CR 426, there is only one cross drain (CD-9) that was analyzed based on the urban typical section. The urban typical section will require the proposed length of the cross drains to be approximately 104 feet in length and will also result in a lower outside edge of pavement elevation due to the widening of SR 46. As a result, this cross drain will need to be upsized to maintain an allowable headwater elevation.

All proposed cross drains will be sized to ensure an allowable headwater elevation. The allowable headwater elevation was determined from an evaluation of land use upstream of the culvert and the proposed roadway elevation. The following factors were also considered in determining the allowable headwater elevation:

- Non-damaging or permissible upstream flooding elevations (e.g. existing buildings or Flood Insurance Regulations).
- State Regulatory Constraints (e.g. Water Management District).
- No encroachment into the proposed elevation of the outside edge of travel lane.

The cross drains were analyzed using FHWA's HY-8 program and the discharges were calculated using FDOT's velocity method. Detailed calculations for all proposed cross drain can be found in the **SR 46 PD&E Location Hydraulics Report**.

3.4 Bridge Structures

The existing bridge was constructed 88 feet to the south of the bridge and causeway it replaced. The proposed bridge will be constructed to the north of the existing bridge, within the limits of the since-demolished bridge and causeway. Depending on the selected typical section, the proposed bridge will either be offset 30 or 40 feet to the north of the existing bridge. There will be no walls on the project, as sloped embankment will be used at both end bents.

As the proposed bridge will run along-side the existing bridge, span the same distance, have similar geometric constraints and provide the same number of travel lanes, both aesthetics and economics dictate that the proposed bridge be constructed with the same structural system as that used by the recently completed existing bridge. The only difference from the existing structure will be the use of Florida-I girders in lieu of AASHTO Type IV girders. The 2012 FDOT Structures Design Guidelines state in section 4.3.1 that all new bridges and bridge widenings with I-shaped beams shall utilize Florida-I Beams. These beams are more cost effective than AASHTO girders, providing for longer spans with wider beam spacings. Horizontal and vertical alignments will match those of the existing bridge.

The proposed bridge will provide two 12-foot wide travel lanes, with 10-foot outside and six-foot inside shoulders and 32-inch F-Shape Traffic Railings for a total width of 43 feet, one inch. The typical section will consist of 4- Florida-I 54 girders, spaced at 11'-11", and an eight and one half inch thick slab. Spans will largely match those of the existing bridge, with all pile bents perpendicular to the centerline except for those at

Channel B. In order for the intermediate bents on either side of Channel B to align with those of the existing bridge, span lengths will need to be adjusted within the vicinity of the channel. The substructure will exclusively utilize pile bents.

To accommodate a multi-use path, the bridge's cross section width could be increased. In this case, the cross-section would consist of two 12-foot travel lanes, with 10-foot outside and six-foot inside shoulders and 32-inch F-Shape Traffic Railings, and the trail with a 32-inch Vertical Shape Railing and a Post "C" Bridge Aluminum Pedestrian/Bicycle Bullet Railing – a total width of 54'-1½". For this alternative, the typical section will consist of five-Florida-I 54 girders, spaced at 11'-9", and an eight and one half inch thick slab. As is the case without the multi-use trail, spans will match those of the existing bridge, with all pile bents perpendicular to the centerline except for those at Channel B, and the substructure will exclusively utilize pile bents.

The existing bridge's intermediate pier placement at Channels A, B, and C were largely dictated by the need to accommodate a possible future navigable waterway. At the time, the United States Army Corps of Engineers (USACE) was investigating the possible closure of a portion of the existing navigable waterway, which runs along the north side of the bridge, and redirecting it through two of the channels to improve water flow into Lake Jesup. Since that time the USACE finalized the Lake Jesup Ecosystem Restoration Report, selecting the No Action alternative. Having concluded that Government Cut has not attributed to the ecological decline of Lake Jesup, there are no current plans to run the navigable waterway through any of the channels. However, during final design, coordination with the USACE should take place in order to confirm that this is still the case.

Deck drainage for the proposed bridge will match that of the existing bridge. From the high point to the west water will flow to inlets located at the end of the bridge. From the high point to the east inlets along the deck will route water to an underdeck drainage pipe.

3.5 Floodplain/Floodways

SR 46 within the limits of this project was constructed on fill and according to available information it appears that the highway is above the 100-year floodplain. An evaluation of 100-year floodplain conditions for this project has been performed to determine the impacts from the embankment required for the proposed widening and proposed ponds. By superimposing the FEMA FIRM maps onto the preferred roadway build alternative, the 100-year floodplain encroachment locations have been determined.

The 100-year floodplain impacts and compensation analysis will be based on the preferred roadway alternative and preferred stormwater treatment ponds. The analysis identified five floodplain boundary encroachments within the project limits. The following provides details regarding floodplain impact locations, conditions, and the method used for floodplain calculations are discussed below.

Floodplain No. 1

According to the FEMA FIRM maps, the limits of Floodplain No. 1 begin at STA 30+32 and ends at STA 142+84. This floodplain is classified as Zone AE, where the base floodplain elevation has been determined to be 9.0 ft NAVD. The roadway embankment required for the proposed widening of SR 46, construction of the new bridge, and proposed ponds will result in impacts to this floodplain. Floodplain impacts will be based on any fill volume above the ESHWT elevation or natural ground, whichever is higher, to the 100-year floodplain elevation.

In order to quantify volumetric floodplain impacts due to the proposed widening of SR 46, preliminary roadway cross sections have been developed using the proposed Suburban Typical Section (widen south and best fit) and Lidar data for Seminole County was used to determine existing ground conditions. In addition, estimated seasonal high water table (ESHWT) elevations from the Bridge Replacement project were used to establish ground water conditions, from STA 77+00 to STA 148+00. The Bridge Replacement project datum is NGVD, therefore a conversion factor of 1 foot has been used to convert from NGVD to NAVD, with NAVD elevations being lower. From STA 22+00 to STA 30+00, a conservative approach will be used to define volumetric floodplain impacts as any fill above the existing ground elevation to the 100-year floodplain elevation. From STA 31+00 to STA 76+00, the ESHWT elevation will be based on the highest existing ground elevation on the north side of SR 46. This approach is conservative and consistent with typical ESHWT elevations that occur within wetlands as well as the preliminary pond boring taken for proposed Pond A.

Based on the preliminary roadway cross sections, floodplain impact (fill) area(s) were quantified per cross section and the average end method was used to determine the volumetric floodplain impacts due to the proposed widening of SR 46.

Floodplain impacts due to the construction of the new bridge were considered minimal and were not calculated as part of this floodplain analysis.

Floodplain impacts due to the construction of the ponds were determined by calculating the average fill height between the 100-year floodplain elevation and the ESHWT elevation per location. Then the pond area required to tie down the proposed pond berm elevation to the ESHWT elevation was measured in CADD. However, in some cases only a portion of the pond is within the floodplain boundary. In such cases, only those areas were measured to determine the floodplain impacts. In order to determine the volumetric floodplain impact created by the pond berms, the impact area(s) were multiplied by the average fill height.

Floodplain compensation for Floodplain No. 1 will be achieved by the construction of Floodplain Compensation Pond(s) 1 and 2. Floodplain compensation will be based on any cut volume between the 100-year floodplain elevation and the ESHWT elevation at each pond location.

Floodplain Compensation Pond 1 is located north of SR 46, adjacent to the Sterling Meadows subdivision. Once wetland delineation was performed by EMD, the original pond area was revised to avoid impacts to the wetland. However, the preliminary pond boring performed by Ardaman & Associates, Inc. was taken within the limits of this wetland and showed the ESHWT elevation at the ground surface. Additional borings are recommended to be performed within the revised pond location during the design phase of this project. For the purposes of this study, the geotechnical boring information from the Sterling Meadows subdivision Pond 101 (SJRWMD Permit No. 4-117-51666-2), was used to establish the ESHWT elevation for Floodplain Compensation Pond 1. The borings indicate that the average ESHWT elevation is 1.5 ft below the existing ground surface elevation. According to Lidar data, the ESHWT elevation would be approximately 7.5 ft NAVD. The Sterling Meadows subdivision Pond 101 is located just west of proposed Floodplain Compensation Pond 1. The northeast corner of this pond creates minor floodplain impacts and has been calculated by the method described above.

Floodplain Compensation Pond 2 is located east of Lake Jesup and north of SR 46, adjacent to modified Pond 2. The preliminary pond boring performed by Ardaman & Associates, Inc. indicates that the ESHWT elevation is 1 ft below the existing ground surface elevation. According to Lidar data, the ESHWT elevation from Ardaman & Associates, Inc. would be approximately 11.5 ft NAVD which appears to be relatively high considering the 100-year floodplain elevation is 9.0 ft NAVD and the permitted ESWHT elevation used for adjacent Pond 2, constructed during the bridge replacement project, is 8.0 ft NGVD which converts to 7.0 ft NAVD. Therefore an estimate of 8.0 ft NAVD will be used as the ESHWT elevation within the proposed pond area for the floodplain compensation calculations. The northwest corner of this pond creates minor floodplain impacts and has been calculated by the method described above.

The following table summarizes the 100-year floodplain impacts and compensation associated with Floodplain No. 1. For detailed calculations of the values shown, please refer to the **SR 46 PD&E Location Hydraulics Report**.

Proposed Condition	Floodplain Impact Volume (ac-ft)	Floodplain Compensation Volume (ac-ft)
SR 46 Widening	29.17	NA
Floodplain Comp Pond 1	0.04	11.09
Pond A3	2.14	NA
Modified Pond 1	0.82	NA
Floodplain Comp Pond 2	0.08	24.27
Floodplain No. 1 Project		
Total:	32.25	35.36

Floodplain No. 2

According to the FEMA FIRM maps, the limits of Floodplain No. 2 begin at STA 199+59 and ends at STA 211+48 within the proposed right-of-way required for the proposed widening of SR 46. This floodplain is located on the north side of SR 46 and is classified as Zone A, where the base floodplain elevation has not been determined. In order to establish the 100-year floodplain elevation, the FEMA floodplain area was digitized and overlaid upon the one-foot Lidar contours and compared to one another. Through this process, a preliminary estimate for the 100-year floodplain elevation was determined to be 16.5 ft NAVD. Due to the proximity and similar soil type, the ESWHT elevation from the preliminary pond boring for proposed Pond B will be used to establish the ESHWT elevation for Floodplain No. 2 calculations. According to Lidar Data, the existing ground elevation at the boring is 15.0 ft NAVD, which puts the ESHWT elevation at 14.5 ft NAVD. The roadway embankment required for the proposed widening of SR 46 will result in impacts to this floodplain. Floodplain impacts will be based on any fill volume above the ESHWT elevation or natural ground, whichever is higher, to the 100-year floodplain elevation.

Floodplain compensation for Floodplain No. 2 will be achieved by the construction of roadside ditches. Floodplain compensation will be based on any cut volume between the 100-year floodplain elevation and the ESHWT elevation.

The following table summarizes the 100-year floodplain impacts and compensation associated with Floodplain No. 2. For detailed calculations of the values shown, please refer to the **SR 46 PD&E Location Hydraulics Report**.

Proposed Condition	Floodplain Impact	Floodplain Compensation		
	Volume	Volume		
	(ac-ft)	(ac-ft)		
SR 46 Widening	0.69	0.69		
Floodplain No. 2 Project				
Total:	0.69	0.69		

Floodplain No. 3

According to the FEMA FIRM maps, the limits of Floodplain No. 3 begin at STA 198+77 and ends at STA 204+99 within the proposed right-of-way required for the proposed widening of SR 46. This floodplain is located on the south side of SR 46 and is classified as Zone A, where the base floodplain elevation has not been determined. In order to establish the 100-year floodplain elevation, the FEMA floodplain area was digitized and overlaid upon the one-foot Lidar contours and compared to one another. Through this process, a preliminary estimate for the 100-year floodplain elevation was determined to be 16.5 ft NAVD. Due to the proximity and similar soil type, the ESWHT elevation from the preliminary pond boring for proposed Pond B will be used to establish the ESHWT elevation for Floodplain No. 3 calculations. According to Lidar Data, the

existing ground elevation at the boring is 15.0 ft NAVD, which puts the ESHWT elevation at 14.5 ft NAVD. The roadway embankment required for the proposed widening of SR 46 will result in impacts to this floodplain. Floodplain impacts will be based on any fill volume above the ESHWT elevation or natural ground, whichever is higher, to the 100-year floodplain elevation.

Floodplain compensation for Floodplain No. 3 will be achieved by the construction of roadside ditches. Floodplain compensation will be based on any cut volume between the 100-year floodplain elevation and the ESHWT elevation.

The following table summarizes the 100-year floodplain impacts and compensation associated with Floodplain No. 2. For detailed calculations of the values shown, please refer to the **SR 46 PD&E Location Hydraulics Report**.

Proposed Condition	Floodplain Impact Volume (ac-ft)	Floodplain Compensation Volume (ac-ft)
SR 46 Widening	0.19	0.22
Floodplain No. 3 Project Total:	0.19	0.22

Floodplain No. 4

According to the FEMA FIRM maps, the limits of Floodplain No. 4 begin at STA 295+18 and ends at STA 313+10. This floodplain is located on the south side of SR 46 and is classified as Zone AE, where the base floodplain elevation has been determined to be 29.0 ft NAVD.

The existing roadway profile within this area ranges from 25.0 ft to 28.5 ft NAVD. By digitizing the FEMA floodplain area and overlaying it upon the proposed roadway alignment, it appears as though the widening would encroach upon this floodplain. However, while developing preliminary roadway cross sections with use of one-foot Lidar contours for this area, there appears to be an existing land berm which contains the 100-year floodplain from encroaching into SR 46. The fact that there has been no record of flooding issues in this area would further reinforce this assumption.

During the design phase of this project, it would be prudent to gather addition survey to define the limits of the existing land berm to ensure that the 100-year floodplain would not encroach into the proposed widening of SR 46. In addition, if any proposed improvement impact the existing land berm, replacement of the berm at an elevation higher than 29.0 ft NAVD will be required.

Floodplain No. 5

According to the FEMA FIRM maps, the limits of Floodplain No. 5 begin at STA 295+35 and ends at STA 296+32 within the proposed right-of-way required for the proposed widening of SR 46. This floodplain is located on the north side of SR 46 and is classified as Zone A, where the base floodplain elevation has not been determined. In order to establish the 100-year floodplain elevation, the FEMA floodplain area was digitized and overlaid upon the one-foot Lidar contours and compared to one another. Through this process, a preliminary estimate for the 100-year floodplain elevation was determined to be 22.5 ft NAVD.

The limits of Floodplain No. 5 only encroach into the proposed 10-foot shared-use-path on the north side of the roadway. Since this encroachment area is so minor, during the design phase of this project the horizontal and vertical placement of the proposed 10-foot shared-use-path should be adjusted to avoid any impacts to Floodplain No. 5.

3.6 Environmental Characteristics

3.6.1 Cultural Resources

The project team conducted a Cultural Resources Assessment Survey (CRAS) for all pond alternatives. No potential impacts to archaeological or historic resources are anticipated. Please refer to the **SR 46 PD&E Study CRAS** for more detailed information.

3.6.2 Wetlands

All of the wetland systems found within the project corridor are currently impacted by their close proximity to the heavily travelled roadway, by drainage projects, and by the adjacent commercial or residential developments. Other surface waters will also be impacted by the proposed roadway improvements, both upland-cut and wetland-cut ditches.

The total number of wetland impacts for the Preferred Alternative is 27.31 acres. The Preferred Alternative will directly impact approximately 27.05 acres of forested wetlands and 0.26 acres of wet prairie / marsh. Additionally, approximately 1.33 acres of wetland-cut ditches will be impacted. Please refer to the **SR 46 PD&E Study Wetland** Evaluation Report (WER) for more detailed information.

3.6.3 Threatened and Endangered Species

The field survey conducted by EMD revealed occurrences of wading birds, eagles, osprey and other raptors, small passerine birds, and amphibians in the project corridor. Evidence of deer, wild hogs, raccoons, and opossums were also determined to be found along the

project corridor. Please refer to the **SR 46 PD&E Study Endangered Species Biological Assessment (ESBA)** report for more detailed information

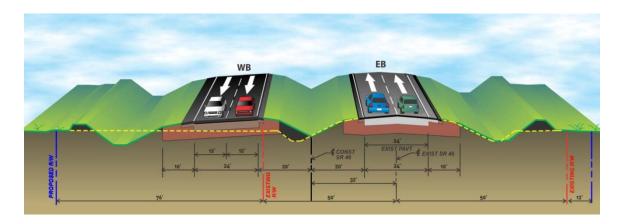
3.7 Typical Sections

For the purposes of analyzing build alternatives, the project was split into four segments as follows:

- Segment 1 SR 415 to the west end of the Lake Jesup/St. Johns River Bridge
- Segment 2 The Lake Jesup/St. Johns River Bridge
- Segment 3 The east end of the Lake Jesup/St. Johns River Bridge to Hart Rd
- Segment 4 Hart Road to CR 426

Two typical sections, rural and suburban, were analyzed for the widening of SR 46 between SR 415 and Hart Road and an urban typical section is proposed for the widening of SR 46 from Hart Road to CR 426. For the rural and suburban typical sections, a widen north and a widen south option was explored.

The rural typical section includes two 12-foot lanes in each direction with eight-foot (two-foot paved) inside shoulders and 10-foot (five foot paved) outside shoulders, which serve as undesignated bicycle lanes. A 40-foot median separates the travel lanes. Conveyance swales are provided on each side of the roadway within the 36-foot clear zone. The design speed of the rural typical section is 60 mph and it requires a minimum of 188 feet of right-of-way (See **Exhibit 3-1** and **Exhibit 3-2**).


The suburban typical section includes two 12-foot lanes in each direction with four-foot inside shoulders and 6.5-foot outside shoulders, which serve as undesignated bicycle lanes. A 30-foot median separates the travel lanes and type E curb and gutter is proposed on both the inside and outside edges of pavement. Within the 30-foot clear zone are a 10-foot asphalt shared-use-path on the north side of the roadway and a five-foot concrete sidewalk on the south side. The design speed of the suburban typical section is 55 mph and it requires a minimum of 148 feet of right-of-way (See **Exhibit 3-3** and **Exhibit 3-4**).

The urban typical section includes one 12-foot lane and one 11-foot lane in each direction with four-foot outside shoulders, which serve as designated bicycle lanes. A 22-foot median separates the travel lanes with type E curb and gutter proposed on the inside edge of pavement and type F curb and gutter proposed on the outside edge of pavement. Within the 12-foot border width is an eight-foot sidewalk on the north side of the roadway and a six-foot concrete sidewalk on the south side. The design speed of the suburban typical section is 45 mph and it requires a minimum of 100 feet of right-of-way (See **Exhibit 3-5**).

In addition to the three proposed alternative typical sections, there will also be construction of a new bridge, parallel to the existing bridge over Lake Jesup. Two bridge typical sections were developed, one with a shared use path and one without. Both bridge typical sections retain the existing bridge as the future eastbound lanes. The

proposed westbound lanes, to be built upon the alignment of the old bridge and causeway that was removed during the construction of the existing bridge, provides two 12-foot lanes, a six-foot inside shoulder and a 10-foot outside shoulder. The typical section without the shared-use path is intended for use with the rural roadway typical section, and maintains the 40-foot median (See **Exhibit 3-6**). The typical section with the shared-use path is intended for use with the suburban typical section, and maintains a 30-foot median (See **Exhibit 3-7**). The shared use path is barrier-separated from the travel lanes and is 10 feet wide.

The proposed typical sections are shown in **Exhibit 3-1** thru **Exhibit 3-7**.

Exhibit 3-1 - Rural Typical Section-Widen to the North

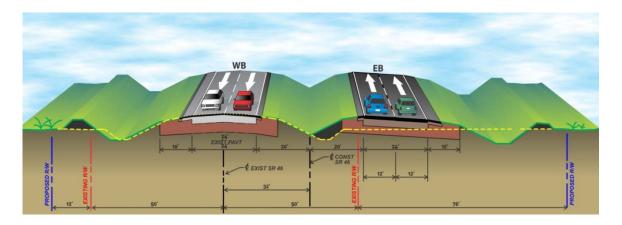
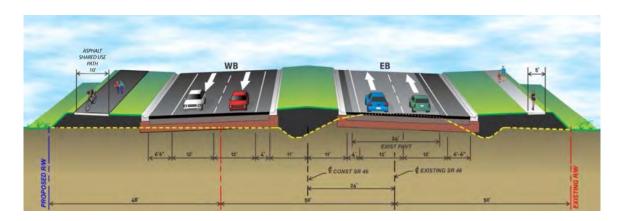
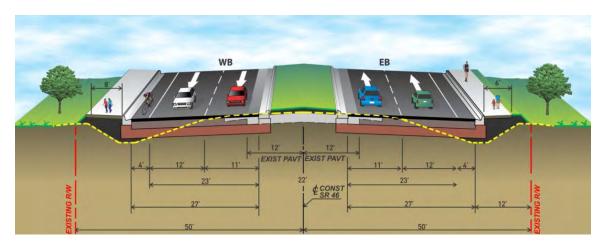


Exhibit 3-2 - Rural Typical Section-Widen to the South

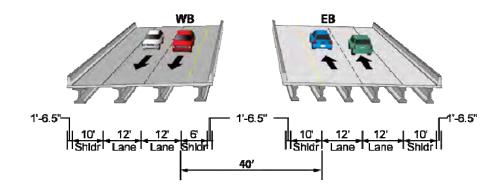

Exhibit 3-3 - Suburban Typical Section-Widen to the North

Exhibit 3-4 - Suburban Typical Section-Widen to the South

Exhibit 3-5 - Urban Typical Section-Centered Widening

Exhibit 3-6 - Bridge Typical Section without Shared Use Path

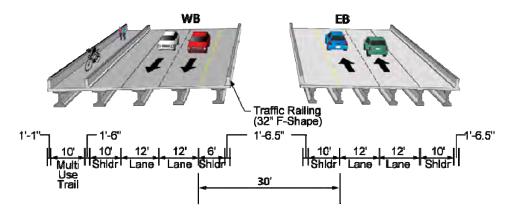


Exhibit 3-7 - Bridge Typical Section with Shared Use Path

Once the typical sections were identified, typical section alternatives were selected by segment.

Segment 1

In order to minimize impacts to existing conservation easements both north and south of SR 46 within this segment, only the suburban typical sections will be considered for Segment 1. Alternative 1 uses the Suburban – Widen North typical section and Alternative 2 uses the Suburban – Widen South typical section.

Segment 2

Segment 2 is the bridge typical section and is dependent on the typical section selected for Segment 3 as indicated above. The Bridge with Shared Use Path typical section is compatible with the suburban typical section and the Bridge without Shared Use Path is compatible with the rural typical section.

Segment 3

Both the rural and suburban typical sections are appropriate for use within Segment 3. Both typical sections will be evaluated and vary between north and south widening in order to minimize impacts to both the natural, physical and social environments. These combinations of north and south widening are known as the Rural Best Fit and Suburban Best Fit alternatives.

Segment 4

Only the urban typical section is being analyzed for Segment 4 in order to minimize right-of-way acquisition to the commercial land uses in the downtown Geneva area.

Full Build Alternatives can be developed from the alternatives listed for each segment. The bridge with the shared use path is compatible with the Suburban Best Fit Alternative, and the bridge without the shared use path is compatible with the Rural Best Fit Alternative. The Segment 1 typical section alternatives are interchangeable and the Segment 4 typical section alternative works with either the Suburban or Rural Best Fit alternatives. **Table 3-1** lists the potential Build Alternatives and associated pond right-of-way acreage for the widening of SR 46.

Required Build Segment 1 Segment 2 Segment 3 Segment 4 Pond Alternativ<u>e</u> R/W (ac) Suburban Bridge with Suburban Best 1 Urban 65.7 North Path Fit Suburban Bridge with Suburban Best 2 Urban 65.7 South Path Fit Suburban Bridge without Rural Best Fit 3 Urban 59.0 North Path Suburban Bridge without 4 Rural Best Fit Urban 59.0 Path South

Table 3-1 – Build Alternatives

In order to minimize impacts to both natural, physical and social environments as well as public consideration obtained from a public meeting held on August 29, 2012, the build alternative 2 was selected as the preferred SR 46 widening improvements. As a result, the proposed drainage design for stormwater treatment, attenuation, and conveyance will be developed to accommodate this preferred build alternative.

3.8 Proposed Drainage

SR 46 is located within the jurisdiction of the SJRWMD. The project limits lie within the Middle St. Johns River Basin of which Lake Jesup is a tributary. The Middle St. Johns River Basin is considered an open basin that discharges to the St. Johns River, which is not considered an OFW. However, the FDEP has adopted TMDLs for both nitrogen and phosphorus for any basin discharging to the St. Johns River above Lake Monroe, Lake Jesup near St. Johns River, and the St. Johns River above Lake Jesup. Also, 100-year floodplains are found within the project limits with the majority being located around the bridge over Lake Jesup.

To determine feasible pond locations, the following procedures were used:

- Establish sub-basins and determine existing outfall locations. The majority of the sub-basins have been divided between existing cross drains.
- Soil conditions and geotechnical subsurface ground water elevations were evaluated to determine the type of stormwater treatment facility (i.e. wet or dry pond). The estimated seasonal high water table (ESWHT) elevations were established based on the preliminary roadway soil survey performed by Ardaman & Associates, permitted conditions for existing Pond(s) 1 & 2 (Bridge Replacement project; SJRWMD Permit No. 40-117-95925-5), and permitted conditions for existing Pond 101 (Sterling Meadows Subdivision; SJRWMD permit No. 4-117-5166-2). The bottom elevations for all dry ponds were set at a minimum of 18" above the ESHWT elevation.
- Existing ground elevations were determined by using Seminole County GIS Lidar Data, 1 foot contours.
- Based on SJRWMD, water quality (treatment) and water quantity (attenuation) criteria were determined. Please refer to **Appendix E** for design criteria.
- All ponds were sized with the capacity to retain the required treatment volume plus the Post-Pre attenuation volume (25 year / 24 hour) with 1 foot of freeboard to the inside berm elevation. Please refer to calculations in **Appendix F**.
- Hydraulic Grade Line (HGL) elevations were compared to roadway elevations in each basin to develop the allowable pond stages. The estimated stormsewer tailwater elevation was assumed to be the pond stage at the 3 year / 24 hour Post-Pre attenuation volume (closed system) plus the required treatment volume.
- The FDOT Critical Storm of 100 year / 72 hour, for open basins, was used to determine the required Post-Pre attenuation volume in basins where there has been record of flooding. This applies to Basin C & D.
- 100-year floodplain impacts will be compensated by Floodplain Compensation Pond(s) 1 & 2 and roadside ditches. Floodplain compensation will be based on any cut volume between the 100-year floodplain elevation and the ESHWT elevation at each pond location.

• Post development TMDLs will be equal to or less than Pre development TMDLs for all basins discharging to the St. Johns River above Lake Monroe, Lake Jesup near St. Johns River, the St. Johns River above Lake Jesup, and the St. Johns River above Lake Harney.

All wet ponds were sized with a 15.0 ft maintenance berm (1:15 or flatter). Side slopes of 1:4 to two feet below the seasonal high water table, and then a 1:2 slope to the proposed pond bottom. All dry ponds were sized with a 15.0 ft maintenance berm (1:15 or flatter) and side slopes of 1:4 to the proposed pond bottom.

Appendix F has detailed calculations for all pond alternatives analyzed.

This study anticipates the stormwater runoff for the proposed SR 46 widening will be collected via a series of curb and gutter inlets. The existing profile grade in several areas along the project limits is nearly flat. During the design phase, special gutter profiles may be required if widening from the existing pavement results in less than the minimum required 0.3% gutter grades. Stormwater runoff from the proposed bridge, high point to eastern limits, will be collected via a series of bridge scuppers and piped into the stormwater treatment pond. Offsite drainage areas, which are unable to be collected in the onsite system due to hydraulic constraints, will be bypassed and conveyed via pipes that discharge to the existing outfall locations. During the design phase, a thorough evaluation of the potential to comingle offsite and onsite runoff into a single collection system should be performed in an effort to minimize conveyance system costs.

As stated before, the sub-basin limits were typically defined as the area between two cross drains. During the design phase, there may be opportunities to reduce the number of ponds required by combining sub-basins. However, this depends on the pond depth being able to accommodate the SR 46 stormsewer system routed underneath the existing cross drains.

3.8.1 Basin A

The limits for Basin A begin at STA 12+00 and continue eastward to STA 75+40. STA 12+00 is the end of project limits for the proposed improvements for the intersection of SR 415 and SR 46 under the FDOT FPID 240216-2-52-01 project and STA 75+40 is the begin project limits for the bridge replacement project under the FDOT FPID 240163-1-52-01. This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Surburban South typical section, via curb and gutter inlets which convey the runoff to the proposed pond.

An important drainage system within this basin includes an existing drainage ditch located on the south side of SR 46. This ditch will be filled in due to the proposed SR 46 widening. Under the proposed conditions, the existing stormwater runoff collected within this ditch will need to be piped to the existing outfall location at STA 43+00.

Basin A is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Monroe and Lake Jesup near the St. Johns River. Alternatives A1, A2 and A3 have been identified as potential pond sites.

Pond A1 is a wet pond located on the north side of SR 46 at STA 45+00. This parcel is within the Bergmann Tract, a private mitigation bank under various conservation easements. There may be many small easements that have been purchased for a variety of developments, which could make this pond location more difficult to mitigate (See **Appendix D** for Correspondence). Pond A1 is completely within the 100-year floodplain boundary and wetland system located on the north side of SR 46. The pond would outfall to the north within a proposed 25 ft drainage easement used to provide positive drainage to the ultimate outfall at the St. Johns River.

Pond A2 is a wet pond located on the north side of SR 46 at STA 50+00. This parcel is within the Bergmann Tract, a private mitigation bank under various conservation easements. There may be many small easements that have been purchased for a variety of developments, which could make this pond location more difficult to mitigate (See **Appendix D** for Correspondence). Pond A2 is completely within the 100-year floodplain boundary and wetland system located on the north side of SR 46. The pond would outfall to the north within a proposed 25 ft drainage easement used to provide positive drainage to the ultimate outfall at the St. Johns River.

Pond A3 is a wet pond located on the south side of SR 46 at STA 50+00. This parcel is within a single conservation easement over the Futch property granted to the FDEP. The Futch property was utilized as mitigation for the construction of the Eastern Beltway permitted through FDEP (See **Appendix D** for Correspondence). Pond A3 is completely within the 100-year floodplain boundary and wetland system located on the south side of SR 46. The pond would outfall to the southwest into the existing drainage ditch that flows into Lake Jesup before ultimately discharging into the St. Johns River.

Preferred Alternative

Pond A3 is the preferred alternative because it requires less mitigation effort. Also, Pond A3 does not require a proposed drainage easement for the pond outfall location, which results in less right-of-way acquisition and wetland impacts. According to the Seminole County Soil Survey, Pond A3 consists of Nittaw (HSG D) soil. The geotechnical boring taken for Pond A1 shows the ESHWT elevation at the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 4.0 ft NAVD. However, due to similar soil conditions and close proximity to existing Pond 1, constructed as part of the bridge replacement project, the permitted conditions have been used to establish the control elevation within Pond A3 in an effort to provide positive discharge from the pond. Because the Bridge Replacement project datum is NGVD, a conversion factor of 1 foot has been used to convert from NGVD to NAVD, with NAVD elevations being lower. With the data complied it was determined that Pond A3 will be a

wet pond with the normal water level / control elevation set at an elevation of 6.4 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 4.0 ft NAVD. Preliminary pond sizing calculations indicates that this pond requires approximately 8.42 acres of area.

3.8.2 Basin 1

The limits for Basin 1 begin at STA 75+40 and continue eastward to the high point of the existing and proposed bridge over Lake Jesup, STA 107+83. These limits are consistent with the permitted conditions for existing Pond 1 constructed during the bridge replacement project (SJRWMD Permit No. 40-117-95925-5). This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Surburban South and Bridge with Path typical sections, via curb and gutter inlets which convey the runoff to the proposed pond.

Basin 1 is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Monroe.

Modification of existing Pond 1 was the only pond alternative evaluated for this basin, which requires the least amount of additional pond right-of-way. Existing Pond 1 will be expanded to provide additional stormwater treatment and attenuation for the proposed roadway improvements. In order to determine the required pond area, modified Pond 1 has been preliminarily designed using the pond control elevation and boundary conditions under the permitted conditions. In addition, to establish the modified Pre development discharge rate from Basin 1, runoff from the additional area(s) for construction of the new bridge and pond expansion were calculated and added to the permitted Pre development discharge rate. Also, the existing pond outfall structure will need to be modified and the inside pond berm elevation will need to be raised to maintain 1 foot of freeboard from the design high water elevation within the pond, based on current FDOT criteria. Basin CN worksheets and ICPR modeling for Basin 1 can be found in **Appendix F**.

The expanded pond area for Modified Pond 1 is completely within the 100-year floodplain boundary and wetland system located on the north side of SR 46. The outfall location of this pond is to adjacent wetlands before ultimately discharging into the St. Johns River.

3.8.3 Basin 2

The limits for Basin 2 begin at the high point of the existing and proposed bridge over Lake Jesup, STA 107+83 and continue eastward to STA 158+15. These limits are consistent with the permitted conditions for existing Pond 2 constructed during the bridge replacement project (SJRWMD Permit No. 40-117-95925-5). This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Bridge with

Path and Surburban best-fit typical sections, via bridge scuppers and curb and gutter inlets which convey the runoff to the proposed pond.

An important drainage system within this basin includes an existing drainage ditch located on the south side of SR 46. This ditch will be filled in due to the proposed SR 46 widening. Under the proposed conditions, the existing stormwater runoff collected within this ditch will need to be conveyed to the existing outfall location at the end of bridge over Lake Jesup.

Basin 2 is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Jesup.

Modification of existing Pond 2 was the only pond alternative evaluated for this basin, which requires the least amount of additional pond right-of-way. Existing Pond 2 will be expanded to provide additional stormwater treatment and attenuation for the proposed roadway improvements. In order to determine the required pond area, modified Pond 2 has been preliminarily designed using the pond control elevation and boundary conditions under the permitted conditions. The existing pond outfall structure will need to be modified and the inside pond berm elevation will need to be raised to maintain 1 foot of freeboard from the design high water elevation within the pond, based on current FDOT criteria. Basin CN worksheets and ICPR modeling for Basin 2 can be found in **Appendix F**.

The expanded area for Modified Pond 2 is above the 100-year floodplain elevation so there will be no floodplain impacts. Also, there are no wetland impacts as a result of the expanded pond area. The outfall location of this pond is to adjacent wetlands before ultimately discharging into the St. Johns River.

3.8.4 Basin B

The limits for Basin B begin at STA 158+15 and continue eastward to STA 226+60. This basin will collect stormwater runoff from the proposed SR 46 widening and new side street connections to West Osceola Road, based on the preferred Surburban best-fit typical section, via curb and gutter inlets which convey the runoff to the proposed pond.

Basin B is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Jesup. Alternatives B1, B2 and B3 have been identified as potential pond sites.

Pond B1 is a wet pond located on the north side of SR 46 at STA 168+00. This remnant parcel falls between the proposed SR 46 widening and West Osceola Road. The entire parcel will most likely be purchased for the proposed roadway improvements mentioned above. Pond B1 is not within the 100-year floodplain boundary, but will impact three

isolated wetlands. The pond would outfall to the north within an existing ditch along the south side of West Osceola Road that ultimately discharges to the St. Johns River.

Pond B2 is a wet pond located on the south side of SR 46 at STA 170+00. This parcel is within the City of Sanford Water Reclamation spray fields. Pond B2 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond outfall would need to be conveyed in a separate system that would discharge to the south side of the existing bridge over Lake Jesup.

Pond B3 is a wet pond located on the north side of SR 46 at STA 180+00. This pond site is located on both the remnant parcel, mentioned within the Pond B1 narrative, and the adjacent residential parcel. However, the proposed pond site will not impact any existing structures within the residential parcel. The northeast corner of Pond B3 falls within the 100-year floodplain boundary and the pond will also impact one isolated wetland. After the threatened and endangered species survey was performed, an existing eagle's nest was located within the area of Pond B3. The pond would outfall to the north within an existing ditch along the south side of West Osceola Road that ultimately discharges to the St. Johns River.

Preferred Alternative

Pond B1 is the preferred alternative because the area is located within the remnant parcel that will be purchased for the proposed roadway improvements. This pond can also utilize the existing ditch located on the south side of West Osceola Road for its outfall location before ultimately discharging into the St. Johns River. According to the Seminole County Soil Survey, Pond B1 consists of St. Johns (HSG B/D) soil. The geotechnical boring taken for Pond B1 shows the ESHWT elevation at 0.5 ft below the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 15.0 ft NAVD, which puts the ESHWT elevation at 14.5 ft NAVD. With the data complied it was determined that Pond B1 will be a wet pond with the normal water level / control elevation set at an elevation of 14.0 ft NAVD. This elevation is lower than the ESHWT elevation; however, according to the boring it is still above the encountered groundwater elevation and there will still be positive discharge from the pond due to the fact that Lidar Data indicates that the existing outfall ditch elevation is approximately 13.0 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 14.0 ft NAVD. Preliminary pond sizing calculations indicates that this pond requires approximately 6.00 acres of area.

3.8.5 Basin C

The limits for Basin C begin at STA 226+60 and continue eastward to STA 276+60. This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Surburban best-fit typical section, via curb and gutter inlets which convey the runoff to the proposed pond.

Basin C is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Jesup. Alternatives C1, C2 and C3 have been identified as potential pond sites.

Pond C1 is a wet pond located on the north side of SR 46 at STA 237+00, within a vacant parcel. Pond C1 is not within the 100-year floodplain boundary, but will impact one isolated wetlands. The pond would outfall to the west via a conveyance pipe that could be directly connected to the downstream side of cross drain, CD-4. CD-4 discharges into an open ditch that runs along Mullet Lake Park Road before ultimately discharging into the St. Johns River.

Pond C2 is a wet pond located on the north side of SR 46 at STA 232+00, within a residential parcel. Pond C2 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond outfall would be the same as the pond outfall for Pond C1 described above.

Pond C3 is a wet pond located on the south side of SR 46 at STA 229+00. This pond site is located within the Sanford Aero Modelers Flying Field. Pond C3 is not within the 100-year floodplain boundary but is located entirely within a wetlands system located on the south side of SR 46. The pond would outfall to the west to the upstream side of CD-4.

Preferred Alternative

Pond C1 is the preferred alternative because this site does not require any relocation of existing residents as compared to alternative Pond C2. Also, this site will have less wetland impacts as compared to alternative Pond C3. According to the Seminole County Soil Survey, Pond C1 consists of St. Johns (HSG B/D) soil. The geotechnical boring taken for Pond C1 shows the ESHWT elevation at 0.5 ft below the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 17.0 ft NAVD, which puts the ESHWT elevation at 16.5 ft NAVD. With the data complied it was determined that Pond C1 will be a wet pond with the normal water level / control elevation set at an elevation of 13.0 ft NAVD. This elevation is lower than the ESHWT elevation; however, according to the boring it is still above the encountered groundwater elevation and there will still be positive discharge from the pond due to the fact that Lidar Data indicates that the elevation at downstream side of CD-4 is approximately 12.0 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 16.0 ft NAVD. There has been record of flooding issues within Basin C so the required Post – Pre attenuation volume has been based on the FDOT critical duration, 100 year / 72 hour storm event. Preliminary pond sizing calculations indicates that this pond requires approximately 4.08 acres of area.

3.8.6 Basin D

The limits for Basin D begin at STA 276+60 and continue eastward to STA 296+64. This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Surburban best-fit typical section, via curb and gutter inlets which convey the runoff to the proposed pond.

Basin D is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Jesup. Alternatives D1, D2 and D3 have been identified as potential pond sites.

Pond D1 is a wet pond located on the north side of SR 46 at STA 279+00, within a residential parcel. However, the proposed pond site will not impact any existing structures within the residential parcel. The northeast corner of Pond D1 falls within the 100-year floodplain boundary but there is no wetland impacts associated with this pond site. The pond would outfall to the downstream side of cross drain, CD-5. CD-5 eventually discharges into a wetland system located within this parcel. There has been record of flooding issues on the downstream side of CD-5 (See **Appendix D** for Correspondence).

Pond D2 is a wet pond located on the south side of SR 46 at STA 284+00, within a vacant parcel. Pond D2 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond outfall would need to be conveyed in a separate system that could be connected to the upstream side of CD-5.

Pond D3 is a wet pond located on the north side of SR 46 at STA 290+00, within a residential parcel. However, the proposed pond site will not impact any existing structures within the residential parcel. The north side of Pond D3 falls within the 100-year floodplain boundary but there is no wetland impacts associated with this pond site. The pond outfall would need to be conveyed in a separate system that would discharge to the downstream side of CD-5.

Preferred Alternative

Pond D1 is the preferred alternative because this site does not require a separate system for the pond outfall. Also, this site would allow for the proposed improvements to resolve the drainage issue on the downstream side of CD-5 by re-grading the existing ditch to provide positive drainage into the adjacent wetland. The re-graded ditch could also potentially provide compensation for the reduction in floodplain impacts created by the construction of the proposed pond. According to the Seminole County Soil Survey, Pond D1 consists of Pomello (HSG C) soil. The geotechnical boring taken for Pond D1 shows the ESHWT elevation at 1.5 ft below the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 23.2 ft NAVD, which puts the ESHWT elevation at 21.7 ft NAVD. With the data complied it was determined

that Pond D1 will be a wet pond with the normal water level / control elevation set at an elevation of 21.0 ft NAVD. This elevation is slightly lower than the ESHWT elevation; however, according to the boring it is still above the encountered groundwater elevation and there will still be positive discharge from the pond due to the fact that Lidar Data indicates that the elevation at downstream side of CD-5 is approximately 20.2 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 21.0 ft NAVD. There has been record of flooding issues within Basin D so the required Post – Pre attenuation volume has been based on the FDOT critical duration, 100 year / 72 hour storm event. Preliminary pond sizing calculations indicates that this pond requires approximately 2.00 acres of area.

3.8.7 Basin E

The limits for Basin E begin at STA 296+64 and continue eastward to STA 310+54. This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Surburban best-fit typical section, via curb and gutter inlets which convey the runoff to the proposed pond.

Basin E is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Jesup. Alternatives E2 and E3 have been identified as potential pond sites. At the beginning of this study, roadside swales were a potential stormwater treatment option due to the more favorable soil conditions and lower ESHWT elevations. Since the Surburban best-fit typical section has been selected for the roadway improvements, roadside swales will no longer be evaluated in this study. However, if a rural typical section is re-evaluated during the design phase, roadside swales still have the potential to provide the required treatment and attenuation for stormwater runoff from the proposed roadway improvements.

Pond E2 is a dry pond located on the south side of SR 46 at STA 301+00, within a vacant parcel. This vacant parcel was once used as a borrow pit for the roadway improvements of SR 417. According to the FEMA FIRM maps, Pond E2 is within the 100-year floodplain boundary. However, according to Lidar Data, there appears to be an existing land berm which would better define the actual boundary of the 100-year floodplain. The exact location of this land berm should be identified during the design phase. The pond would outfall to the west within a proposed 25 ft drainage easement used to provide positive drainage to the downstream side of cross drain, CD-6. This drainage easement will impact the wetland system located on the south side of SR 46.

Pond E3 is a dry pond located on the north side of SR 46 at STA 299+00, within a vacant parcel. The north side of Pond E3 falls within the 100-year floodplain boundary and also impacts a wetland system on the north side of SR 46. The pond would outfall to the upstream side of CD-6.

Preferred Alternative

Pond E2 is the preferred alternative because this site has a high potential of resulting in no impacts to the 100-year floodplain. In addition, during the design phase the proposed 25 ft drainage easement could potentially be eliminated by conveying the pond outfall in a separate system that would discharge to the downstream side of CD-6 which would result in no wetland impacts. According to the Seminole County Soil Survey, Pond E2 consists of Astatula (HSG A) soil. The geotechnical boring taken for Pond E2 shows the ESHWT elevation at 7.5 ft below the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 27.1 ft NAVD, which puts the ESHWT elevation at 19.6 ft NAVD. With the data complied it was determined that Pond E2 will be a dry pond with the pond bottom set at an elevation of 22.0 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 23.0 ft NAVD. Preliminary pond sizing calculations indicates that this pond requires approximately 1.91 acres of area. By using the proposed pond geometry and geotechnical soil parameters, a preliminary recovery analysis was performed to verify that the entire treatment volume could be recovered within 72 hours.

3.8.8 Basin F

The limits for Basin F begin at STA 310+54 and continue eastward to STA 326+73. This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Suburban best-fit typical section, via curb and gutter inlets which convey the runoff to the proposed pond.

Basin F is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Jesup. Alternatives F2 and F3 have been identified as potential pond sites. At the beginning of this study, roadside swales were a potential stormwater treatment option due to the more favorable soil conditions and lower ESHWT elevations. Since the Suburban best-fit typical section has been selected for the roadway improvements, roadside swales will no longer be evaluated in this study. However, if a rural typical section is re-evaluated during the design phase, roadside swales still have the potential to provide the required treatment and attenuation for stormwater runoff from the proposed roadway improvements.

Pond F2 is a dry pond located on the south side of SR 46 at STA 316+50, within a vacant parcel. This vacant parcel was once used as a borrow pit for the roadway improvements of SR 417. Pond F2 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond would outfall to the west within a proposed 25 ft drainage easement used to provide positive drainage to the upstream side of cross drain, CD-7. This drainage easement will impact one isolated wetland located on the south side of SR 46.

Pond F3 is a dry pond located on the north side of SR 46 at STA 315+00, within a vacant parcel. Pond F3 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond would outfall to the west within a proposed 25 ft drainage easement used to provide positive drainage to the downstream side of cross drain, CD-7. This proposed easement will also impact the vacant parcel to the west of the proposed pond site. This drainage easement will impact the wetland system located on the north side of SR 46.

Preferred Alternative

Pond F2 is the preferred alternative because the proposed 25 ft drainage easement required for the pond outfall will have less wetland impacts than the required easement associated with Pond F3. Also, this proposed pond site and easement will only impact one parcel compared to two parcels required for Pond F3. According to the Seminole County Soil Survey, Pond F2 consists of Astatula (HSG A) soil. The geotechnical boring taken for Pond F2 shows the ESHWT elevation at 9.0 ft below the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 25.0 ft NAVD, which puts the ESHWT elevation at 16.0 ft NAVD. With the data complied it was determined that Pond F2 will be a dry pond with the pond bottom set at an elevation of 19.0 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 26.0 ft NAVD. Preliminary pond sizing calculations indicates that this pond requires approximately 1.28 acres of area. By using the proposed pond geometry and geotechnical soil parameters, a preliminary recovery analysis was performed to verify that the entire treatment volume could be recovered within 72 hours.

3.8.9 Basin G

The limits for Basin G begin at STA 326+73 and continue eastward to STA 368+00. This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Suburban best-fit typical section, via curb and gutter inlets which convey the runoff to the proposed pond.

Basin G is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Jesup. Alternatives G2 and G3 have been identified as potential pond sites. At the beginning of this study, roadside swales were a potential stormwater treatment option due to the more favorable soil conditions and lower ESHWT elevations. Since the Suburban best-fit typical section has been selected for the roadway improvements, roadside swales will no longer be evaluated in this study. However, if a rural typical section is re-evaluated during the design phase, roadside swales still have the potential to provide the required treatment and attenuation for stormwater runoff from the proposed roadway improvements.

Pond G2 is a dry pond located on the south side of SR 46 at STA 329+00, within a vacant parcel. Pond G2 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond would outfall to the west to the upstream side of CD-8.

Pond G3 is a dry pond located on the north side of SR 46 at STA 324+50, within a vacant parcel. Pond G3 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond would outfall to the east to the downstream side of CD-8.

Preferred Alternative

Pond G2 is the preferred alternative because there is less variation in the existing ground elevations at this proposed pond site than alternative Pond G3, which should made construction of the pond less difficult. Also, there is an existing spring in the vicinity of the Pond G3 site where the exact location has not been determined. According to the Seminole County Soil Survey, Pond G2 consists of Astatula (HSG A) soil. The geotechnical boring taken for Pond G2 shows the ESHWT elevation at 8.5 ft below the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 48.9 ft NAVD, which puts the ESHWT elevation at 40.4 ft NAVD. With the data complied it was determined that Pond G2 will be a dry pond with the pond bottom set at an elevation of 43.0 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 43.0 ft NAVD. Preliminary pond sizing calculations indicates that this pond requires approximately 3.16 acres of area. By using the proposed pond geometry and geotechnical soil parameters, a preliminary recovery analysis was performed to verify that the entire treatment volume could be recovered within 72 hours.

3.8.10 Basin H

The limits for Basin H begin at STA 368+00 and continue eastward to the end of the study limits. This basin will collect stormwater runoff from the proposed SR 46 widening, based on the preferred Urban typical section, via curb and gutter inlets which convey the runoff to the proposed pond. The stormwater runoff from the proposed roadway improvements along CR 426 will also be collected and conveyed to the proposed pond via ditch bottom inlets.

Basin H is an open basin that ultimately discharges to the St. Johns River. The basin is not considered to be an OFW; however, the FDEP has adopted TMDL for both nitrogen and phosphorous for any basin that discharges to the St. Johns River above Lake Harney. Alternatives H1, H2, and H3 have been identified as potential pond sites.

Pond H1 is a dry pond located on the north side of SR 46 at STA 399+00, within a residential parcel. However, the proposed pond site will not impact any existing structures within the residential parcel. Pond H1 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond would outfall to the south side of SR 46 into an existing roadside ditch before ultimately discharge into the St. Johns River.

Pond H2 is a dry pond located on the southeast corner at the intersection of SR 46 and CR 426 at STA 394+00. The site is located on 3 parcels, 2 parcels being vacant and the other parcel is Chuck's Automotive Repair. Pond H2 is not within the 100-year floodplain boundary and will not impact any wetlands. The pond would outfall to the south side of SR 46 into an existing roadside ditch before ultimately discharge into the St. Johns River.

Pond H3 is a dry pond located on the northeast corner at the intersection of SR 46 and CR 426 at STA 392+00 within a vacant parcel. Pond H3 is not within the 100-year floodplain boundary but will impact one isolated wetland on the north side of SR 46. The pond would outfall to the south side of SR 46 into an existing roadside ditch before ultimately discharge into the St. Johns River.

Preferred Alternative

Pond H1 is the preferred alternative because there will be no impacts to wetlands as compared to alternative Pond H3 and no business damages as compared to alternative Pond H2. According to the Seminole County Soil Survey, Pond H1 consists of Astatula (HSG A) soil. The geotechnical boring taken for Pond H1 shows the ESHWT elevation at 9.0 ft below the ground surface. According to Lidar Data, the existing ground elevation at the boring is approximately 42.4 ft NAVD, which puts the ESHWT elevation at 33.4 ft NAVD. With the data complied it was determined that Pond G2 will be a dry pond with the pond bottom set at an elevation of 38.0 ft NAVD. According to Lidar Data obtained for this pond site, the existing ground elevation at the perimeter of the pond is at approximately 41.0 ft NAVD. Preliminary pond sizing calculations indicates that this pond requires approximately 2.89 acres of area. By using the proposed pond geometry and geotechnical soil parameters, a preliminary recovery analysis was performed to verify that the entire treatment volume could be recovered within 72 hours.

3.9 Total Maximum Daily Loads (TMDL)

SR 46 is located within the jurisdiction of the SJRWMD. The project limits lie within the Middle St. Johns River Basin of which Lake Jesup is a tributary. The Middle St. Johns River Basin is considered an open basin that discharges to the St. Johns River, which is not considered an OFW. However, the FDEP has adopted TMDLs for both nitrogen and phosphorus for any basin discharging to the St. Johns River above Lake Monroe, Lake Jesup near St. Johns River, the St. Johns River above Lake Jesup, and the St. Johns River above Lake Harney.

Pre-development and post-development annual mass loading for both nitrogen and phosphorus have been preliminary calculated for each sub-basin (See **Table 3-2**). TMDL reduction within the stormwater management facilities are only based on the type of proposed facilities (i.e. wet or dry ponds).

SUB-BASIN	Pre - Annual Mass Loading - Nitrogen (kg/yr)	Pre - Annual Mass Loading - Phosphorus (kg/yr)	Post - Annual Mass Loading - Nitrogen (kg/yr)	Post - Annual Mass Loading - Phosphorus (kg/yr)	Stormwater Management Facility (SWMF)	Effluent Annual Mass Loading from SWMF - Nitrogen (kg/yr)	Effluent Annual Mass Loading from SWMF - Phosphorus (kg/yr)
Α	23.125	1.106	89.516	12.008	Wet Pond	51.689	2.907
1	16.788	0.803	51.043	6.847	Wet Pond	29.857	1.900
2	29.455	1.409	64.012	8.587	Wet Pond	37.160	2.219
В	27.923	4.411	99.560	13.356	Wet Pond	58.792	3.965
С	12.248	0.586	71.413	9.580	Wet Pond	42.114	2.820
D	10.161	1.605	27.891	3.741	Wet Pond	16.637	1.173
E	3.585	0.566	16.278	2.184	Dry Pond	0.159	0.021
F	1.334	0.064	21.577	2.895	Dry Pond	0.153	0.021
G	5.523	0.872	51.456	6.903	Dry Pond	0.668	0.090
Н	7.597	1.174	41.866	5.616	Dry Pond	0.443	0.059

Table 3-2 – Pre-Development and Post-Development TMDL

TOTAL(s):	127 720	12 506	227 672	15 175
(kg/yr)	137.739	12.596	237.672	15.175

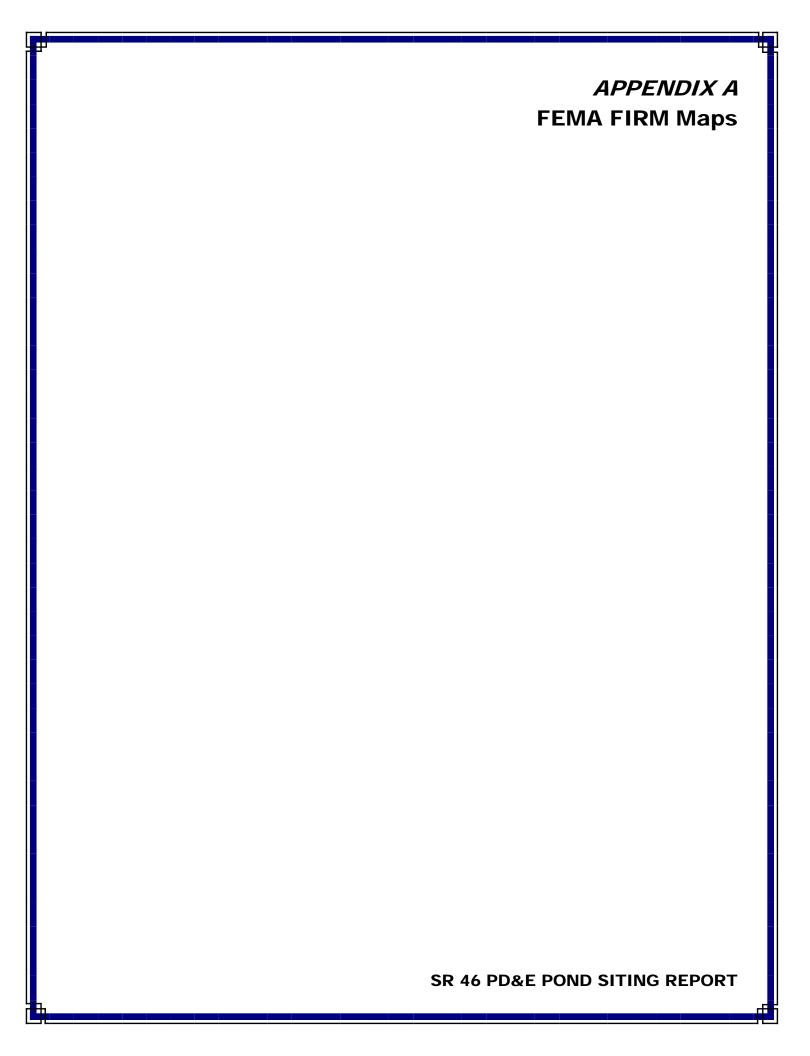
Based on the table above, TMDL net reduction will present a challenge during the design and permitting phase of this project. The proposed stormwater management facilities per each sub-basin only will not achieve the required post-development TMDLs being equal to or less than the pre-development TMDLs. The largest contributing factor for the net increase in TMDLs is the percentage of directly connected impervious area (DCIA) from the pre-development versus post-development conditions. Based on the existing typical section, all impervious areas are considered Non-DCIA while the preferred alternative typical sections (Suburban South, Bridge with Path, Suburban Best Fit, and Urban) all impervious areas are considered DCIA.

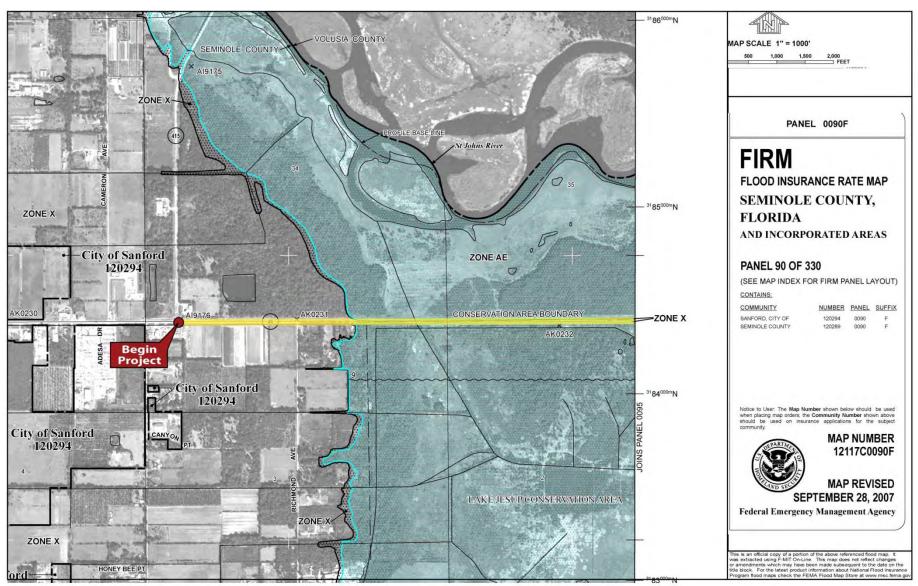
During the design and permitting phase of this project, it is recommended to have a preapplication meeting with SJRWMD to discuss the following:

- Since all sub-basin ultimately discharge to the St. Johns River, can the pre post TDMLs quantities be considered a comprehensive nutrient loading (as shown in the table above).
- For all sub-basins / ponds that discharge into a wetland and /or ditch before ultimately discharging to the St. Johns River, is there sufficient mixing to allow for the nutrient loading (TMDL) requirements to be eliminated.

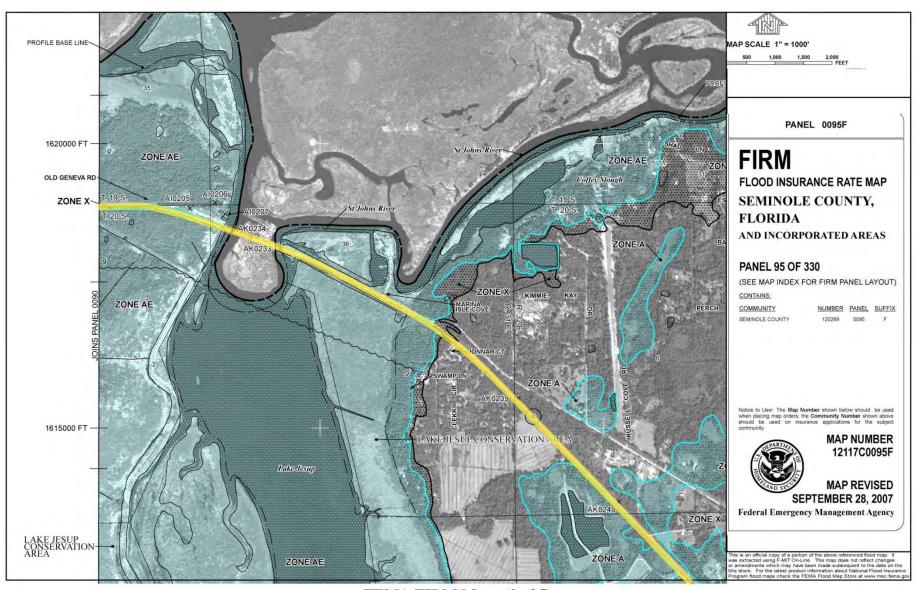
In addition to the recommendations shown above, the following stormwater treatment options should be examined during the design phase of this project to provide the required nutrient removal:

- Stormwater Harvesting
- Floating Islands with Wet Detention
- Vegetated Natural Buffer
- Pervious Pavement
- Swales

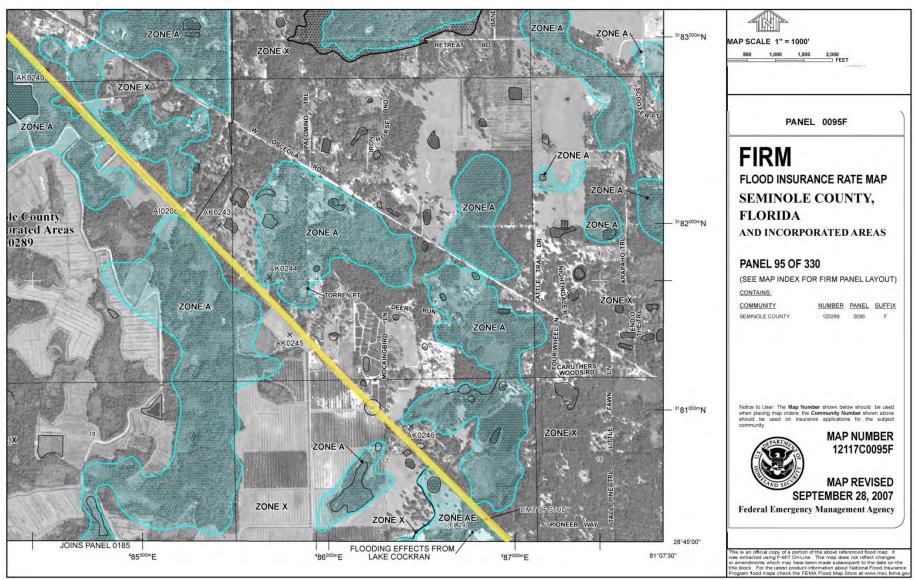

4.0 CONCLUSIONS

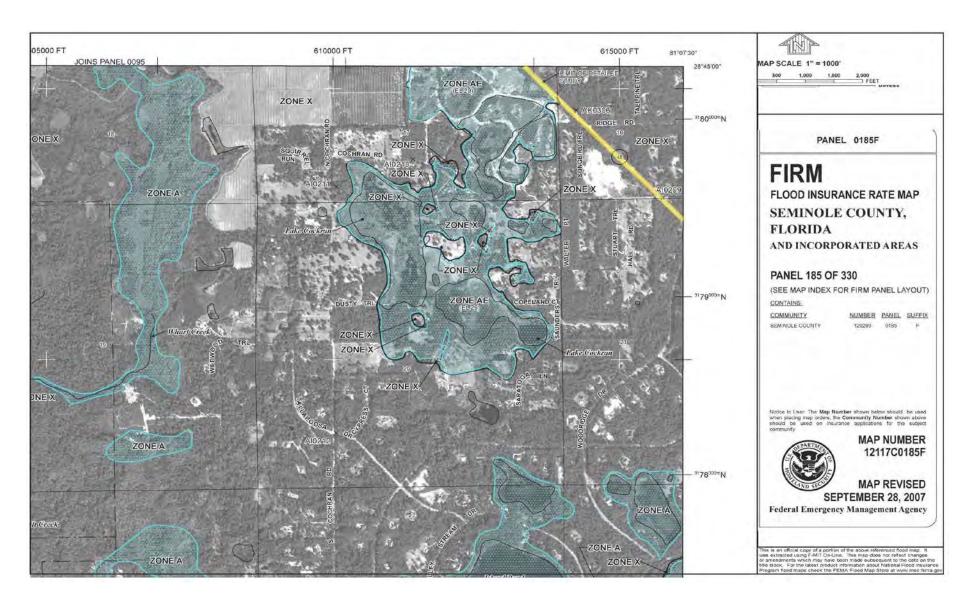

Alternative pond sites have been identified along the project limits. The analysis estimates right-of-way needs using volumetric analysis, which accounts for water quality treatment and water quantity for runoff attenuation. The right-of-way cost estimates found in this report is a budget tool that can be used by Seminole County and FDOT District 5 to estimate total acquisition costs associated with each pond alternative and to budget the appropriate funds for acquisition. Right-of-way cost estimates are not real estate appraisals and do not reflect market values.

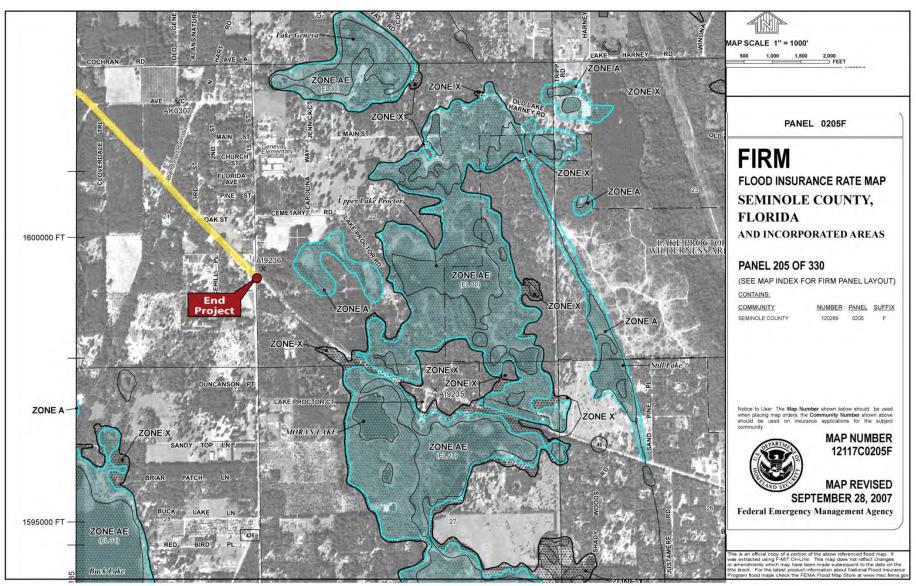
Pond sizing calculations as well as graphics showing the roadway alignment and associated pond site alternatives are included in **Appendix F** and **Appendix G**, respectively, of this Pond Siting Report. Please note that the recommendations were based on pond sizes and locations determined from preliminary calculations, reasonable engineering judgment, and assumptions. Pond sizes and locations may change during the final design as more detailed information on ESHWT elevations, wetland normal pool elevations, final roadway profile design, and confirmed TMDL requirements, etc. become available. Please see **Table 4-1** for a Summary of Pond Recommendations.


Table 4-1 – Summary of Pond Recommendations

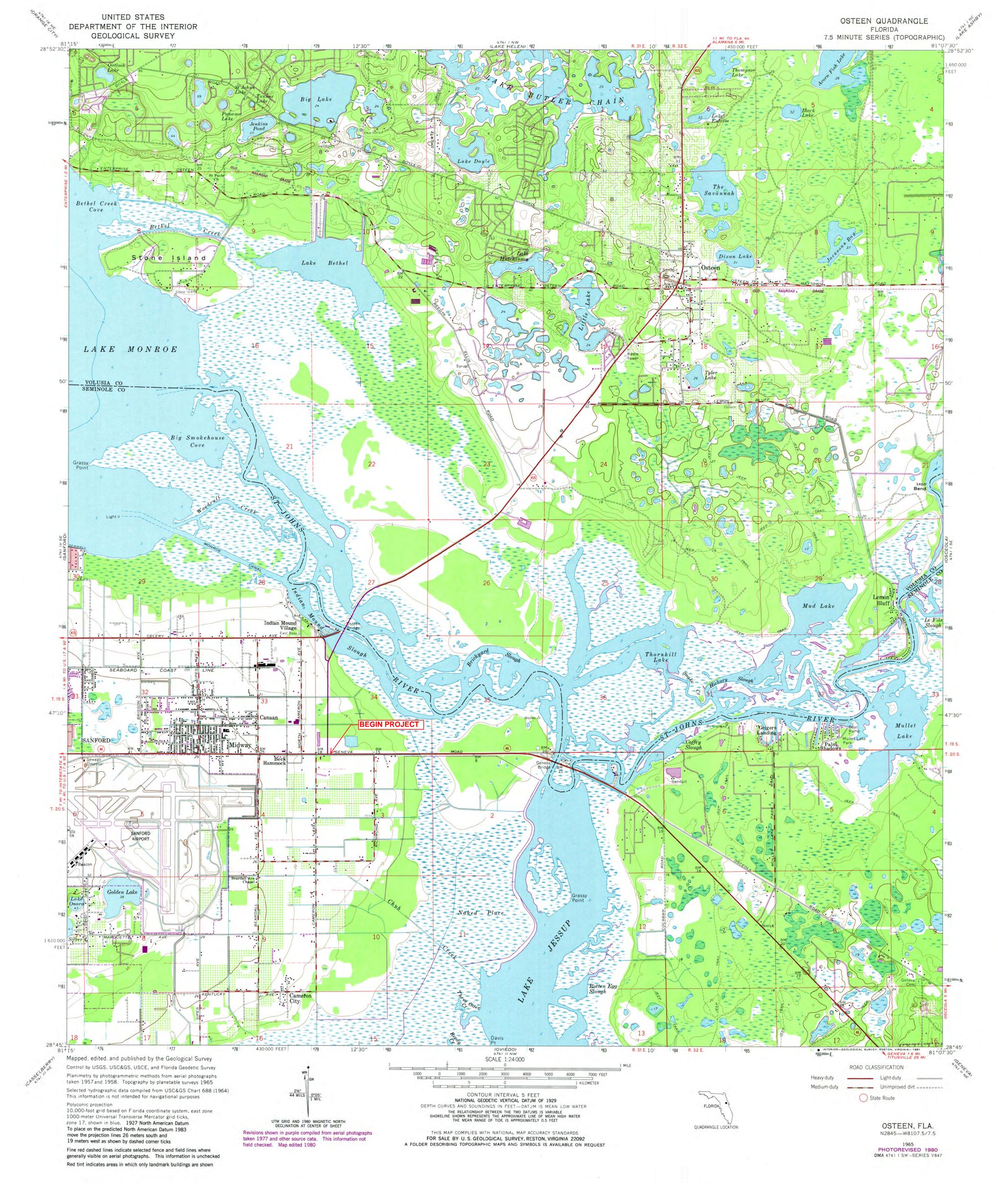
Basin	Preferred Pond Alternative
Α	Pond A3
В	Pond B1
С	Pond C1
D	Pond D1
E	Pond E2
F	Pond F2
G	Pond G2
Н	Pond H1
1	MOD Pond 1
2	MOD Pond 2
Floodplain No. 1	FP Comp 1 FP Comp 2

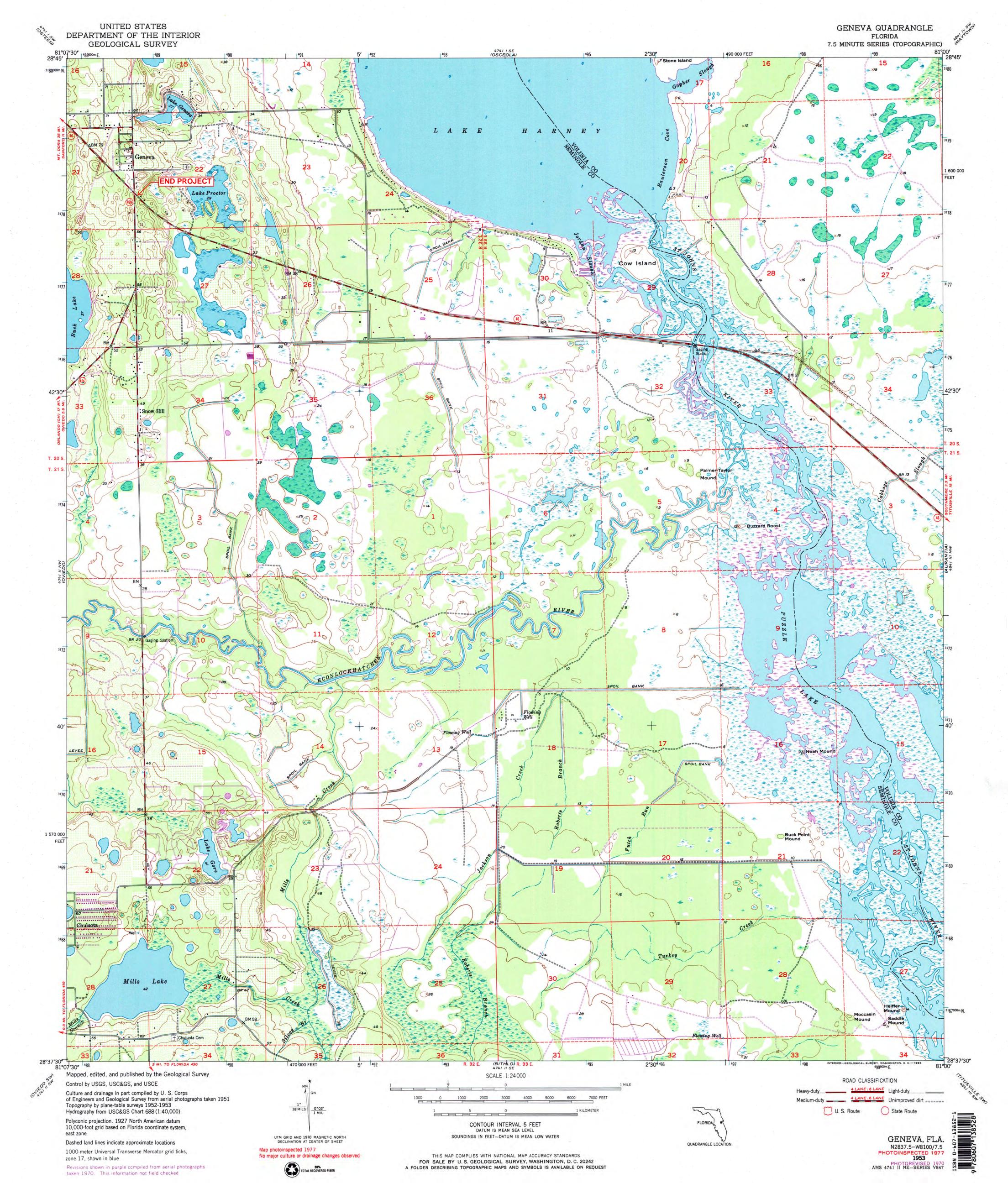



FEMA FIRM Maps (1 of 5)

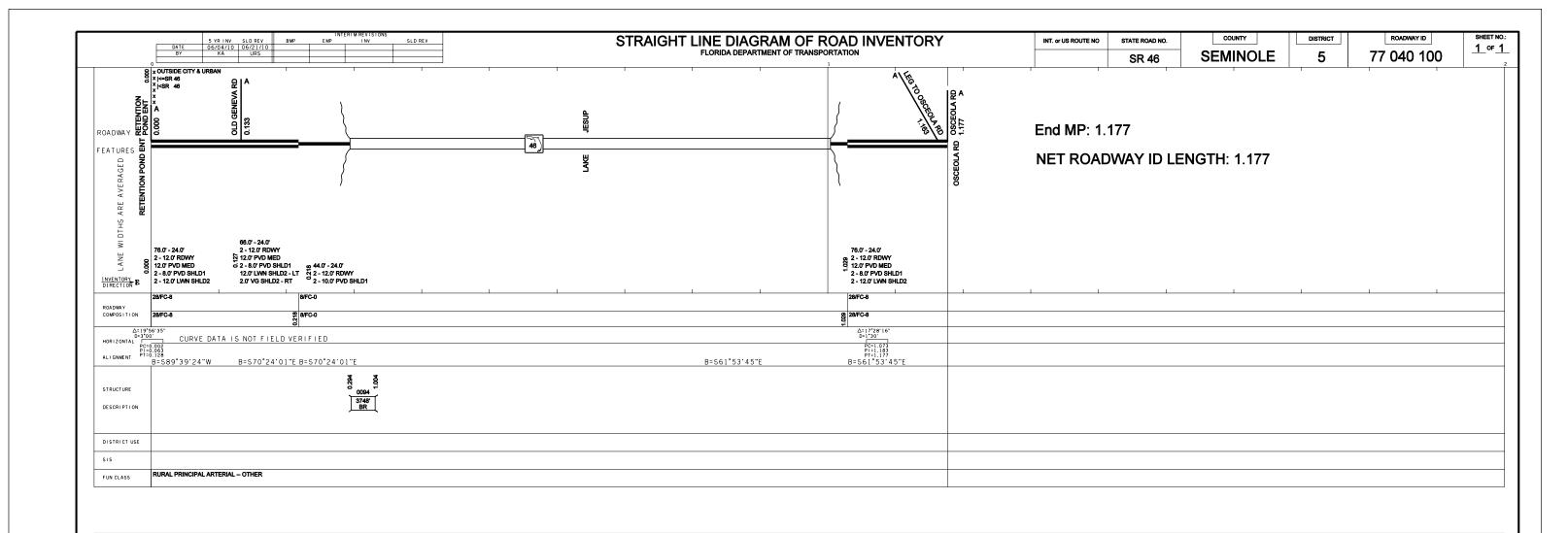

FEMA FIRM Maps (2 of 5)

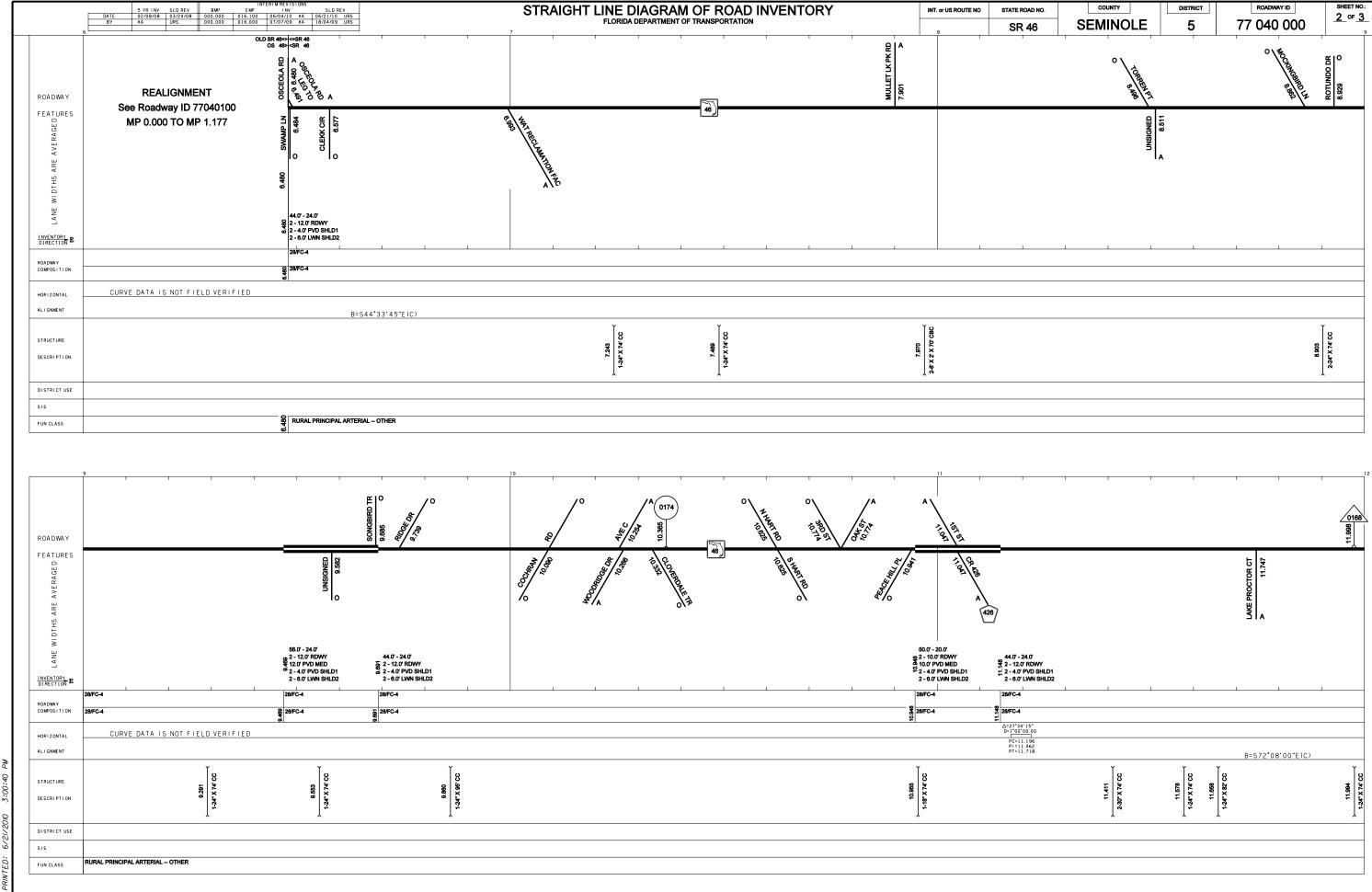
FEMA FIRM Maps (3 of 5)



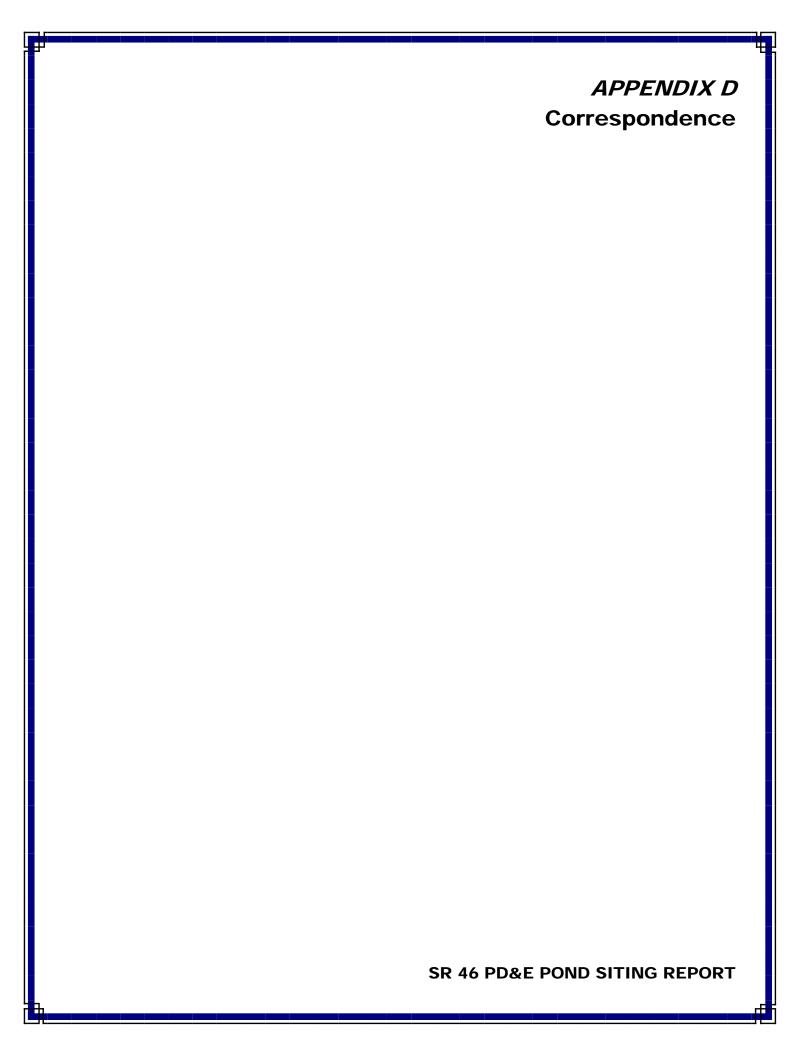

FEMA FIRM Maps (4 of 5)

FEMA FIRM Maps (5 of 5)


APPENDIX B **USGS Quadrangle Maps SR 46 PD&E POND SITING REPORT**



APPENDIX C **FDOT Straight Line Diagrams SR 46 PD&E POND SITING REPORT**


H:\DeLand\UserData\MT5\0RM\DGN\s\T7040-20\0.dg

PRINTED: 6/21/2010 3:30:48 PM

H: WeLand WserData WIT5/0RM WGN's V77040-20/0

URS Corporation

315 E. Robinson Street, Suite 245 Orlando, FL 32804 Phone: (407) 422 – 0353 Fax: (407) 423 – 2695

RECORD OF CONVERSATION						
DATE: Feb. 7, 2012	JOB #: <u>12721027</u>					
RECORDED BY: DTL FDOT	CLIENT: Seminole County &					
TALKED WITH: Jim Wood	OF: FDOT Maintenance					
NATURE OF CALL: Incoming	Outgoing Meeting]				
ROUTE TO:						
MAIN SUBJECT OF CONVERSATION:	Drainage issues and base clearance	<u>ce</u>				

Danh Lee spoke with Jim Wood of FDOT Maintenance about any possible drainage concerns within the project corridor. The first item of concern, Jim mentioned, deals with an existing cross drain (CD-5 at mile post 7.97) and the fact that there is not positive drainage at the outfall. However, the outfall drains into private property and thus has not been fixed. Jim believes that the problem exist due to the grading or lack thereof, within the private property.

The only other concern is in the area of Mullet Lake Park Road. The east side of the roadway, north of SR 46 sometimes floods. FDOT has received calls in the past regarding flooding in this area. However, since the flooding occurs outside of FDOT right of way, there is not much they can do to fix the problem. Jim believes that flooding happens due to the ultimate outfall and the conveyance system(s) leading into St. Johns River. Specifically, the water is backing up into private property due to not having positive drainage / adequate grading required within certain private properties. Also, the conveyance systems may be undersized to handle the required flow capacities which would allow for the runoff to be maintained within the appropriate limits.

The discussion continued about field observations that were made on 2/2/12. During the field visit, I noticed that two (2) endwalls for the existing cross drains

URS Corporation

315 E. Robinson Street, Suite 245 Orlando, FL 32804 Phone: (407) 422 – 0353 Fax: (407) 423 – 2695

were buried. The endwall for CD-7, on the south side of the roadway was completely buried. The top of the endwall for CD-8, on the north side was only visible and the 24" RCP was completely underground. Jim stated that no problems existed in these areas and that the maintenance crew would be sent out soon to uncover the endwalls during this current dry season.

The next item of discussion was base clearance. I asked Jim if there were any issues regarding base clearance and / or any problems with deterioration of the existing road surface. Jim stated that there were no issues that he could recall. He did state that the road surface within the project corridor was recently milled and re-surfaced so no problems are currently visible. However, he stated that before the milling and re-surfacing project, there were some areas that had "alligator" cracking.

SR 46 Environmental Issues Meeting Notes Meeting with St. Johns River Water Management District – Maitland Service Center August 22, 2012

SR 46 PD&E Study FPN 240216-4-28-01 Contract No. PS-5738-10

ATTENDEES:

Mark Flomerfelt, P.E. – Seminole County Shannon Carter Wetzel – Seminole County

Jan Everett – URS Danh Lee – URS Chris Rizzolo – URS Liz Barker – EMD

Mary McGehee – FDOT Victoria Nations – SJRWMD Lee Kissick – SJRWMD Marjorie Cook – SJRWMD

Kenneth Lewis - SJRWMD

A meeting was held at the Maitland Service Center of the St. Johns River Water Management District on August 22, 2012 for the SR 46 Project Development and Environment (PD&E) study. The meeting was held to discuss the proposed roadway improvements, the conservation easements within the corridor and the proposed impacts to environmentally sensitive areas. A summary of the items discussed at the meeting includes the following:

Chris Rizzolo introduced the project, provided a brief history and background information.

The limits of the PD&E study were discussed as well as the various typical sections associated with the project. The suburban typical section requires 148' of R/W and the rural typical section requires 188' of R/W. Only the suburban typical section is under consideration for the portion of the project west of the bridge.

The Build Alternatives have been broken into smaller segments to allow for a more detailed and thorough evaluation. In addition, there will be north, central and south alignment alternatives.

In addition, there is an adjacent FP&L transmission line north of the roadway between SR 415 and the bridge.

The project is scheduled for design in fiscal year 2015 (July 2014 through June 2015).

The summary of findings outlined within the U.S. Army Corps of Engineers Draft Ecosystem Restoration Report (April 2012) regarding the Government Cut (bypass canal)

was discussed. In addition, information regarding Channels A, B and C was provided.

The previous PD&E study was discussed as well as the commitments and recommendations made during the previous PD&E process.

Liz Barker provided a summary of the environmental information collected to date regarding the conservation easements along the corridor and the mitigation areas associated with the Lake Jesup Bridge Replacement project.

West of Lake Jesup and north of SR 46 is the Bergmann Tract, a private mitigation bank under various conservation easements. The URS PD&E team does not have a record of all the acreage that has been placed within the various conservation easements or information on whether or not all easements have been recorded within Seminole County. There may be many very small easements that have been purchased for a variety of developments, which could make widening SR 46 to the north difficult.

West of Lake Jesup and south of SR 46 is a single conservation easement over the Futch Property granted to the Florida Department of Environmental Protection (FDEP). The Futch property was utilized as mitigation for the construction of the Eastern Beltway (Seminole County Expressway Authority) permitted through FDEP.

The mitigation for the previously permitted Lake Jesup Bridge Replacement was discussed, which consisted of the removal of the causeway and the restoration of the Tornado Tavern and Marina Isle Fish Camps. The mitigation was evaluated utilizing UMAM during the permitting of the bridge replacement. The documentation demonstrating the final scoring and function gain for each mitigation area is still in question. Lee Kissick stated that he is working with Lisa Grant to determine if the UMAM scoring, as outlined within Anthony Miller's email dated November 3, 2006, is the final version of the UMAM scoring.

An existing Sovereign Submerged Lands easement from the Board of Trustees of the Internal Improvement Trust Fund (TIITF) exists within project corridor. Therefore, a modification for the project improvements should not be required.

Although not quantified at this time, the project will result in direct and secondary wetland impacts throughout the corridor.

Various mitigation options were preliminarily discussed which included additional restoration and enhancement opportunities as well as mitigation bank credits.

Victoria Nations outlined the permitting requirements for the project:

The SJRWMD will only require a Conservation Easement Release submittal for impacts to recorded conservation easements. The URS PD&E team will need to determine if all conservation easements have been recorded.

In addition, the District may have the master map that demonstrates all conservation easements associated with the Bergmann Mitigation Tract. The District will search their files.

- The SJRWMD will not require permit modifications of the various permits associated with the Bergmann Mitigation Tract in conjunction with the Conservation Easement Release submittals.
 - The SJRWMD will not require a modification to the Lake Jesup Bridge Replacement permit due to the proposed impacts to the existing mitigation areas.
- The SJRWMD Individual Environmental Resource Permit will be applied for at the appropriate time.
 - Restoration of Channel B as requested by the Friends of Lake Jesup may be one mitigation strategy, but it would have to show a benefit,

Danh Lee explained the preliminary stormwater design for the project, consisting of ponds and adjacent swales.

Marjorie Cook addressed the following items:

- The preliminary stormwater design for the project needs to address the loss of flood storage within the 10-year floodplain. Compensation shall be provided through excavation of a volume of uplands equivalent to the loss of storage within the regulatory floodplain.
- It was recommended that the URS PD&E team review the existing sovereign submerged lands easement to insure that the proposed project occurs within the SSL easement.

Note: The above reflects the writer's understanding of the contents of the meeting. If any misinterpretations or inaccuracies are included, please notify the author within seven (7) days of receiving the notes.

SR 46 Environmental Issues Meeting Notes Meeting with Florida Department of Environmental Protection – Central District Office August 28, 2012

SR 46 PD&E Study FPN 240216-4-28-01 Contract No. PS-5738-10

Chris Rizzolo – URS Mary McGehee – FDOT Liz Barker – EMD Lisa Prather – FDEP

A meeting was held at the Central District office of the Florida Department of Environmental Protection on August 28, 2012 for the SR 46 Project Development and Environment (PD&E) study. The meeting was held to discuss the proposed roadway improvements, the conservation easements within the corridor and the proposed impacts to environmentally sensitive areas. A summary of the items discussed at the meeting includes the following:

Chris Rizzolo introduced the project, provided a brief history and background information.

The limits of the PD&E study were discussed as well as the various typical sections associated with the project. The suburban typical section requires 148' of R/W and the rural typical section requires 188' of R/W. Only the suburban typical section is under consideration for the portion of the project west of the bridge.

The physical constraints within the limits of the project were discussed, which include the environmental constraints, available right-of-way and utilities.

The summary of findings outlined within the U.S. Army Corps of Engineers Draft Ecosystem Restoration Report (April 2012) regarding the Government Cut (bypass canal) was discussed.

Liz Barker provided a summary of the environmental information collected to date regarding the conservation easements along the corridor.

West of Lake Jesup and north of SR 46 is the Bergmann Tract, a private mitigation bank under various conservation easements.

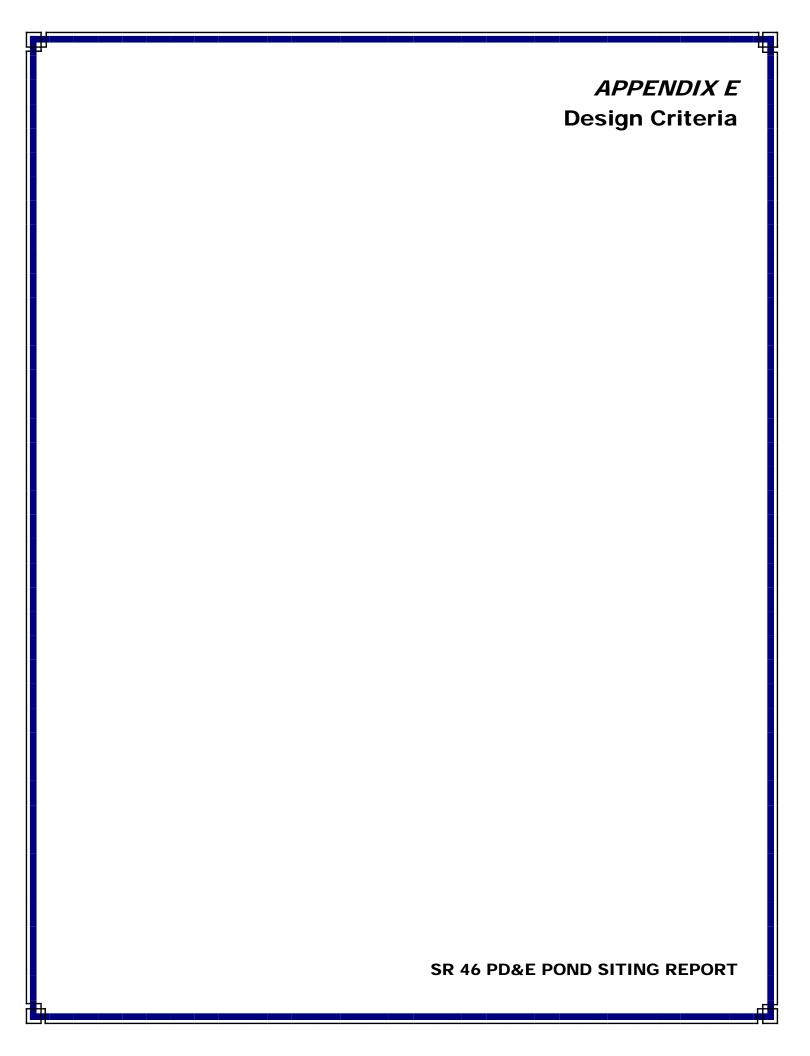
West of Lake Jesup and south of SR 46 is a single conservation easement over the Futch Property granted to the Florida Department of Environmental Protection (FDEP). The

Futch property was utilized as mitigation for the construction of the Eastern Beltway (Seminole County Expressway Authority) permitted through FDEP.

Since it is highly likely that a Conservation Easement Release would be required by FDEP to allow for the proposed roadway improvements, various mitigation options were preliminarily discussed that included additional restoration and enhancement opportunities as well as mitigation bank credits.

Lisa Prather outlined the requirements for a Conservation Easement Release:

Historically, a Conservation Easement Release was completed during the permitting of the Lake Jesup Bridge Replacement, which was accomplished utilizing mitigation bank credits from the Lake Monroe Mitigation Bank.


The FDEP will only require a Conservation Easement Release letter submittal for impacts to the recorded conservation easement for the Futch Property.

No permit modification would be required in associated with the Conservation Easement Release.

FDEP would be amenable to the concept of using the restoration of Channel B for the partial release of lands within the Futch Property. The details of this mitigation plan would needed to be provided to FDEP as part of the Conservation Easement Release submittal. There was discussion regarding the timing of the mitigation and how many acres of the channel would be restored. Authorization for the proposed restoration project would be provided through the issuance of an Environmental Resource Permit.

FDEP would not object to the elimination of the canal within the Futch Property, which occurs on the south side of SR 46, since it was planned to be filled as part of the original mitigation plan.

Note: The above reflects the writer's understanding of the contents of the meeting. If any misinterpretations or inaccuracies are included, please notify the author within seven (7) days of receiving the notes.

SR 46 PD&E FROM SR 415 TO CR 426 FPN 240216-4-28-01 SEMINOLE COUNTY AND FDOT DISTRICT 5

DRAINAGE DESIGN CRITERIA

The design of the stormwater management facilities for the project is governed by the rules set forth by the SJRWMD and FDOT. Water quality treatment and water quantity attenuation requirements will comply with the guidelines as defined in SJRWMD Chapter 40C-4 of the Florida Administration Code (F.A.C) Environmental Resource Permit (ERP) manual.

Wet detention and dry retention ponds will provide for water quality improvements as well as water quantity attenuation for the project runoff. Please refer to the summary below for the water quality, water quantity, FDOT critical duration, and retention pond facilities configuration criterion used for the project:

Water Quality

- Wet detention ponds s t o r m w a t e r treatment will be provided for the greater of one inch (1") of stormwater runoff over the drainage area or two and a half inches (2.5") of runoff from the impervious area (excluding water bodies). An orifice should be set at or above the average between the Estimated Seasonal High Water Level (ESHWL) elevation and Estimated Seasonal Low Water Level (ESLWL) elevation and sized to drawdown one-half of the required treatment volume within 24 to 30 hours but no more than one half of this volume will be discharged within the first 24 hours.
- Dry retention ponds (off-line) stormwater treatment will be provided for the greater of one half inch (0.5") of stormwater runoff over the drainage area or one and a quarter inches (1.25") of runoff from the impervious area (excluding water bodies). For online dry retention ponds the treatment will be provided for the greater of that which is specified for offline systems, plus an additional one half inch (0.5") of stormwater runoff over the drainage area. The pond bottom, for dry retention, shall be set no less than one foot (1') above the SHWL in order to provide recovery of the required treatment volume through the soil. The required treatment volume is required to be fully recovered within 72 hours of the storm event.
- Dry retention ponds (on-line) stormwater treatment will be provided for the greater of that which is specified for off-line systems, plus an additional one half inch (0.5") of stormwater runoff over the drainage area. The pond bottom, for dry retention, shall be set no less than one foot (1') above the SHWL in order to provide recovery of the required treatment volume through the soil. The required treatment volume is required to be fully

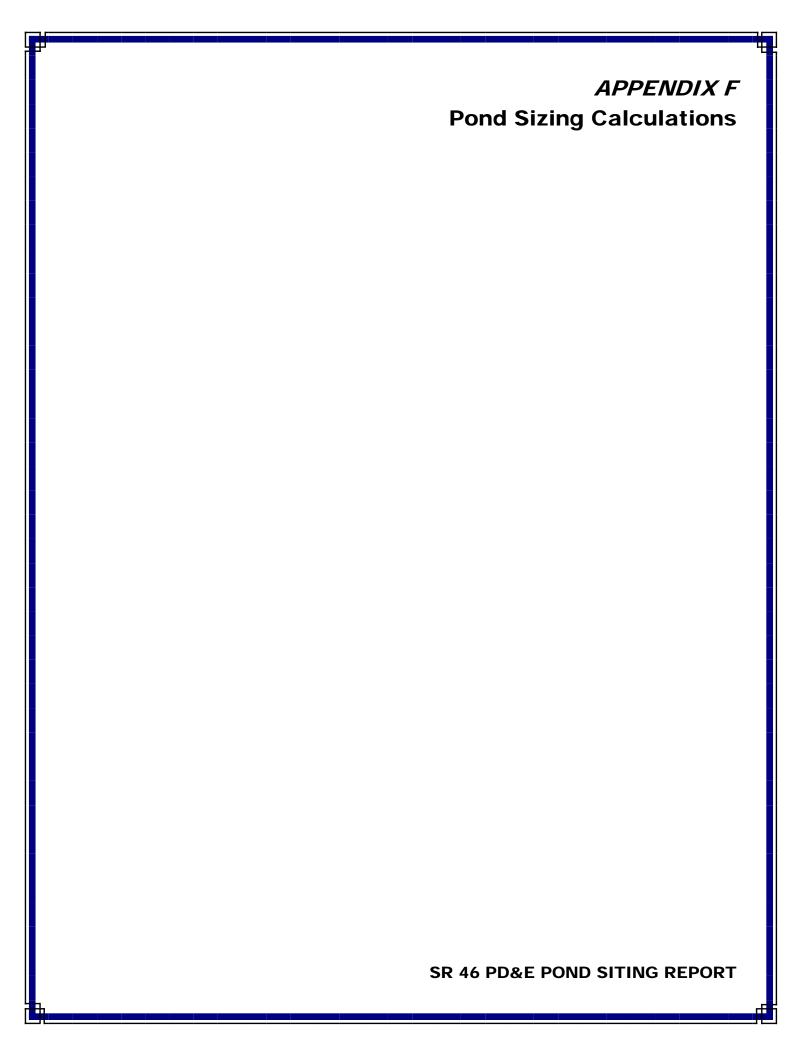
recovered within 72 hours of the storm event.

Water Quantity

• For open basins, SJRWMD requires that the post-development peak discharges shall be at or below pre-development peak discharges for the 25-year/24- hour storm event.

Critical Duration

• For open basins, FDOT critical duration analysis for 1-hour through 3-day storm events shall be analyzed to ensure that the post developed peak runoff volume do not exceed the pre-developed peak runoff volume.


Wet Detention Pond Facilities Configuration

• The proposed pond will include a 20-foot maintenance berm (15' minimum and no steeper than 1:6), maximum 1:4 (Vertical:Horizontal) for pond side slopes (to a depth of 2-feet below the control elevation, then 1:2 to the pond bottom) and tie up/down slopes to existing ground and a minimum 1-foot freeboard from the inside maintenance berm to the Design High Water (DHW). Please refer to FDOT District 5 checklist for more detailed information about pond configurations.

Dry Retention Pond Facilities Configuration

• The proposed pond will include a 20-foot maintenance berm (15' minimum and no steeper than 1:6), maximum 1:4 (Vertical:Horizontal) for pond side slopes (to a depth of 1-foot above the SHWL) and tie up/down slopes to existing ground and a minimum 1-foot freeboard from the inside maintenance berm to the Design High Water (DHW). Please refer to FDOT District 5 checklist for more detailed information about pond configurations.

The stormwater runoff for the roadway will be collected by curb and gutter inlet systems and conveyed to the proposed wet detention and dry retention ponds. The SCS method has been used to determine the required pond size for each sub-basin. In addition, Basin 1 and Basin 2 also used ICPR to model the existing pond expansion in more detail and preliminary recovery analysis has been performed for all dry retention ponds. Also, it should be noted that for contingency purposes, the alternative pond sites for Basin A thru Basin H have been upsized by twenty percent (20%).

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin A	MADE BY:	DTL	02/19/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/9/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin A / Pond A1 - Suburban Typical					
Open Space - Fair Conditions	Pineda (5%)	B/D	69 ·	0.86	59.34
Open Space - Fair Conditions	Basinger (35%)	B/D	69 ·	6.08	419.52
Open Space - Fair Conditions	Felda (10%)	D	84 ·	1.74	146.16
Open Space - Fair Conditions	Nittaw (50%)	D	84 ·	8.68	729.12
Impervious (Paved parking, roads, etc.)			98 ·	4,69	459.62
Pond footprint	Nittaw	D	84 ·	6.52	547.68
			TOTALS	. 28.57	2361.44

COMPOSITE CN	82.65

ESTIMATE OF RUNOFF VOLUME

		P = rainfall in	nches		
•	E - V(R)	V(R) = (R / 12)*BASIN AR	EA	(acres-feet)
3) DETERMINE RUNOFF VOLUMI CALCULATION TABLE					,
,	Design Storm Frequency	V(R) = (R / 12	S (in)	EA R (in)	(acres-feet)
CALCULATION TABLE Agency		P	s	R	V(R)
CALCULATION TABLE	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin A	MADE BY:	DTL	02/19/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	D€F	04/09/14

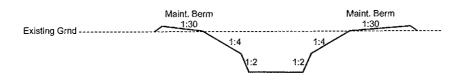
	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin A / Pond A1 - Suburban Typical					
Open Space - Fair Conditions	Pineda (5%)	B/D	69	0.42	28.98
Open Space - Fair Conditions	Basinger (35%)	B/D	. 69 -	2.95	203.55
Open Space - Fair Conditions	Felda (10%)	D	84 .	0.84	70.56
Open Space - Fair Conditions	Nittaw (50%)	D	84 •	4.22	354.48
Impervious (Paved parking, roads, etc.)			98 .	13.62	1334.76
Pond NWL			100 ·	5.39	539.00
Pond pervious area	Nittaw	D	84 -	1.13	94.92
	,		TOTALS	· 28.57	2626.25

COMPOSITE CN	,	91.92	

ESTIMATE OF RUNOFF VOLUME

		-			
i) DETERMINE SOIL STORAGE - S	>	S = (1000 / C	N)-10		(inches)
2) DETERMINE RUNOFF - R	>	$R = (P \sim 0.2*S)$	s)^2/(P+0.8	* \$)	(inches)
		P = rainfall in	inches		
3) DETERMINE RUNOFF VO LUME	- V(R)>	V (R) = (R / I2		EA	(acres-feet
	- V(R)>			EA	(acres-feet
3) DETERMINE RUNOFF VO LUME CALCULATION TABLE Agency	- V(R)			EA R	(acres-feet
CALCULATION TABLE		V (R) = (R / 12	Σ)*BASIN AR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
CALCULATION TABLE Agency		V(R) = (R / E)	2)*BASIN AR S	R	V(R)
CALCULATION TABLE	Design Storm Frequency	V(R) = (R / E)	2)*BASIN AR S (in)	R (in)	V(R) (ac-ft)

URS				
MADE BY:	DTL	DATE: 02/19/14	PROJECT NO.:	240216-4-28-1
CHECKED BY:	1x3	DATE: 04/2014		
CALCULATIONS FOR:	SR 46 PD&E	POND: At	BASIN:	Basin A
Water Quality				
Total Basin Arca ≃	28.57	ac		
Paved Area =	13.62	ac		
Pond Area at NWL =	5.39	ac		
A.	1.0 " Over Total Basin Area	=	2.38 Ac-Ft	
В.	2.5 "Over Paved Area =		2.84 Ac-Ft	
Required Treatment	(PAV) =		2.84 Ac-Ft	
Required Attenuation	a (Post - Pre) =		2.34 Ac-Ft	3yr / 24hr
Required Attenuation	ı (Post - Pre) =		2.57 Ac-Ft	10yr / 24hr
Required Attenuation	ı (Post - Pre) =		2.66 Ac-Ft	25yr / 24hr
Required Treament V	Vol. + Attentuation Vol. =		5.50 Ac-Ft	25yr / 24hr SJRWMD Open Basir


Stage Storage Calculations

ELEV.	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
			(ac)		(at-it)	(80-31)
4.00	Poud R/W (1:2 max slope tie down)	7.02				
9.00	Out Berm	6.52				14.80
		ľ	6.15	0.50	3.08	
8.50	Inside Berm	5.78		1	Γ	11.73
		I Г	5.69	1.00	5.69	
7.50	Provided Treatment Vol. +	5.59		1		6.04
	Attentuation Vol.	l t	5.59	0.10	0.54	
7.40	Required Treatment Vol. +	5.58	j			5.50
	Attentuation Vol.		5.57	0.06	0.33	
7.34	Estimated Stormsewer	5.57				5.17
	Tailwater		5.53	0.42	2.32	
6.92	Required Treatment Vol.	5.49				2,84
	(PAV)	T	5.44	0.52	2,84	
6.40	Normal Water Level	5.39				***************************************
					L	
4,40		5.02				
2.10	_					
-2.40	Bottom	4,42				

Required Treatment Vol. + Attentuation Vol. = 5.50 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 6.04 Ac-Ft

Required Treatment Vol. + Attentuation Stage = 7.40 Ft Provided Treatment Vol. + Attentuation Stage = 7.50 Ft (1 Ft freeboard)

Required Treatment Vol. + Stormsewer Attentuation Vol. = 5.17 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 7.34 Ft

Additional 20% of Pond R/W = 8.42 ac

URS

MADE BY:

DTL

DATE:

02/19/14

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR: DEP SR 46 PD&E DATE: POND:

04/30/14

BASIN:

Basin A

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	13.62	0.95	12.94
Roadway Pervious Area	8.43	0.20	1.69
Pond Pervious Area	1.13	0.20	0.23
Pond Area at NWL	5.39	1.00	5.39
Total	28.57		20.24

Composite C =

0.71

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

4.78 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

7.18 ac-ft

Stage Storage Calc.

E	LEV.	AREA	AVG	Delta	Deita	Sum
	/da\	(00)	AREA	D (#1)	storage (ac-ft)	Storage (ac-ft)
	(ft)	(ac)	(ac)	(ft)	(ac*it)	(au-11)
9.00	Out. Berm	6.52				
8.50	In. Berm	5.78				
7.40		5.58				
6.92	(PAV)	5.49				
6.40	(NWL)	5.39	1			42.51
	(**************************************		5.21	2.00	10.41	
4.40		5,02				32.10
			4,72	6.80	32.10	
-2.40	Bottom	4.42				

Permanent Pool Volume Provided =

42.51 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

124.4 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

7.89 ft

U	RS MADE BY: CHECKED BY: PROJECT:	DTL TXV SR 46 PD&E			DATE: 02/19/14 DATE: 64 [30/)4 POND: A1		PROJECT NO.: 240216-4-28-1 BASIN: Basin A
		Щ	<u>/draulic Gr</u>	ade Line (Clearance Calcul	<u>ations</u>	
	1) Estimated tailv	vater elevation ir	the pond (fo	r preliminary	storm sewer design)	=	7.34 ft
	2) Calculation of	post-developme	nt area for HG	AL check			
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	- -
							_
							-
					Total		<u>]</u> }
							J
		or see Post CN	l worksheet	22.05	ac		
	3) Lowest gutter 6	elevation in Rasi	n for HGL che	eck			
	o) Londok gallor (·					
		Station Baseline	39+00 CL46				
		Offset (ft) Elevation (ft)	34.50 8.79				
		(,,		J			
	4) Allowable Head	d Loss = lowest	gutter el - est	. tailwater el	= [1.45	ft
	5) Pipe length fro	m Pond to lowes	st gutter point	=	400 f	t	
	6) Rational Metho	od for contributin	a runoff - Q=0	CiA	7) Estimation of Pipe	e Size	
	, C =				HL = [4.61*(n^2)*L*(i) + K(\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	int. =	6.50					
	A = Q =	22.05 94.59			HL = Allowable Head n = Manning's n	d Loss (ft)	1.31 trial
					L = Length (ft)		
	Manning's ກ = Sum K =				Q = Runoff (cfs) D = Pipe diameter (f	t)	
	V =	\vdash	fps		K = coefficient for mi	nor losses	
					V = pipe velocity (fps g = gravitational con:		sec^2)
					3	, , -	,
	8) Estimated Pipe	Diameter to sat	isfy the condi	tions ==	5.0 f		
					60 i	n	

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin A	MADE BY:	DTL	02/20/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/10/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin A / Pond A2 - Suburban Typical					
Open Space - Fair Conditions	Pineda (5%)	B/D	69 '	0.86	59.34
Open Space - Fair Conditions	Basinger (35%)	B/D	69 ·	6.08	419.52
Open Space - Fair Conditions	Felda (10%)	D	84 ·	1.74	146.16
Open Space - Fair Conditions	Nittaw (50%)	D	84	8.68	729.12
Impervious (Paved parking, roads, etc.)			98 ·	4.69	459.62
Pond footprint	Nittaw	D	84 ·	6.52	547.68
			TOTALS	· 28.57	2361.44

COMPOSITE CN	- 82.65

ESTIMATE OF RUNOFF VOLUME

DETERMINE RUNOFF - R						
DETERMINE RUNOFF - R	PROCEDURE TO DETERMINE RUNO	FF VOLUME IS BASED ON THE	SCS EQUATI	ON AND IS A	S FOLLOWS	; :
DETERMINE RUNOFF VOLUME - V(R)	1) DETERMINE SOIL STORAGE - S	>	S = (1000/C	N)-10		(inches)
DETERMINE RUNOFF VOLUME - V(R)	2) DETERMINE RUNOFF - R	>	R = (P - 0.2*	S)^2 / (P + 0.8	* S)	(inches)
Agency Design Storm Frequency P (in) (in) (in) (in) (ac-ft (ac-f			P = rainfall in	inches		•
Agency Design Storm Frequency P (in) (in) (in) (in) (ac-ft (ac-f	3) DETERMINE RUNOFF VOLUME - V	/(R)>	V(R) = (R/1)	2)*BASIN AR	EA	(acres-feet
JRWMD Open Basin 3 yr/24 hr 5.60 2.10 3.69 8.78 JRWMD Open Basin 10 yr/24 hr 7.50 2.10 5.46 13.00	CALCULATION TABLE					
JRWMD Open Basin 3 yr/24 hr 5.60 2.10 3.69 8.78 JRWMD Open Basin 10 yr/24 hr 7.50 2.10 5.46 13.00	Agency	Design Storm Frequency	P	S	R	V(R)
JRWMD Open Basin 10 yr / 24 hr 7.50 2.10 5.46 13.00	, ,		(in)	(in)	(in)	(ac-ft)
	SJRWMD Open Basin	3 yr / 24 hr	5.60	2.10	3.69	8.78
JRWMD Open Basin 25 yr / 24 hr 8.60 2.10 6.51 15.5 0	SJRWMD Open Basin	10 yr / 24 hr	7.50	2.10	5.46	13.00
	SJRWMD Open Basin	25 yr / 24 hr	8.60	2.10	6.51	15.50
				<u> </u>		+

worksheet: PRE CN

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basia A	MADE BY:	DTL	02/20/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04/10/14

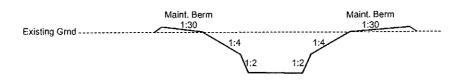
	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin A / Pond A2 - Suburban Typical					
Open Space - Fair Conditions	Pineda (5%)	B/D	69	0.42	28.98
Open Space - Fair Conditions	Basinger (35%)	B/D	69	2.95	203.55
Open Space - Fair Conditions	Felda (10%)	D	84	0.84	70.56
Open Space - Fair Conditions	Nittaw (50%)	D	84	4.22	354.48
Impervious (Paved parking, roads, etc.)			98	13.62	1334.76
Pond NWL			100	5.39	539.00
Pond pervious area	Nittaw	D	84	1.13	94.92
			TOTALS	· 28.57	2626.25

COMPOSITE CN	,	91.92	ı

ESTIMATE OF RUNOFF VOLUME

1) DETERMINE SOIL STORAGE -	S>	S = (1000 / C	N)-10		(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S)	S)^2 / (P + 0.8	*S)	(inches)
		P = rainfall in	inches		
3) DETERMINE RUNOFF VOLUM	E - V(R)>	V(R) = (R / 1	2)*BASIN AR	EA	(acres-feet
•	E - V(R)>	V(R) = (R / 1)	2)*BASIN AR	EA	(acres-feet
3) DETERMINE RUNOFF VOLUM CALCULATION TABLE Agency	E - V(R)	V(R) = (R / 1	2)*BASIN AR S	EA R	(acres-feet
CALCULATION TABLE					
CALCULATION TABLE Agency		P	S	R	V(R)
CALCULATION TABLE	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)

URS MADE BY: DTL DATE: 02/20/14 PROJECT NO.: 240216-4-28-1 CHECKED BY: TEF DATE: 04/30/14 CALCULATIONS FOR: SR 46 PD&E POND: A2 BASIN: Basin A Water Quality Total Basin Area = 28.57 ac 13.62 ac Paved Area = 5.39 ac Pond Area at NWL = 1.0 " Over Total Basin Area = 2.38 Ac-Ft A. B. 2.5 " Over Paved Area = 2.84 Ac-Ft 2.84 Ac-Ft Required Treatment (PAV) = 2.34 Ac-Ft 2.57 Ac-Ft Required Attenuation (Post - Pre) = 3yr / 24hr 10yr / 24hr Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) = 2.66 Ac-Ft 25yr / 24hr Required Treament Vol. + Attentuation Vol. = 5.50 Ac-Ft 25yr / 24hr SJRWMD Open Basin Required Treatment Vol. + Stormsewer Attentuation Vol. = 5.17 Ac-Ft 3yr / 24hr closed system


Stage Storage Calculations

ELEV.	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
4.00	Pond R/W (1:2 max slope tie down)	7.02	(40)	(15)	(10 11)	
9.00	Out Berm	6.52	6.15	0.50	3.08	14.8
8.50	Iuside Berm	5.78	5.69	1,00	5.69	11.3
7.50	Provided Treatment Vol. + Attentuation Vol.	5.59	5.59	0.10	0.54	6.0
7.40	Required Treatment Vol. + Attentuation Vol.	5.58	5.57	0.06	0,33	5.5
7.34	Estimated Stormsewer Tailwater	5.57	5.53	0,42	2.32	5.
6.92	Required Treatment Vol. (PAV)	5,49	5,44	0,52	2.84	2.
6.40	Normal Water Level	5.39	J., 1			
4,40		5.02				
-2.40	Bottom	4.42			-	

Required Treatment Vol. + Attentuation Vol. = 5.50 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 6.04 Ac-Ft

Required Treatment Vol. + Attentuation Stage = 7.40 Ft Provided Treatment Vol. + Attentuation Stage = 7.50 Ft (1 Ft freeboard)

Required Treatment Vol. + Stormsewer Attentuation Vol. = 5.17 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 7.34 Ft

Additional 20% of Pond R/W = 8.42 ac

URS

MADE BY:

DTL

DATE:

02/20/14

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR: DEP SR 46 PD&E DATE: POND: 04/20/14

BASIN:

Basin A

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	13.62	0.95	12.94
Roadway Pervious Area	8.43	0.20	1.69
Pond Pervious Area	1.13	0.20	0.23
Pond Area at NWL	5.39	1.00	5.39
Total	28.57		20.24

Composite C =

0.71

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

4.78 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

7.18 ac-ft

Stage Storage Calc.

ELEV.		AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
9.00	Out. Berm	6.52				
8.50	In. Berm	5.78				
7.40		5.58				
6.92	(PAV)	5.49				
6.40	(NWL)	5.39	5.21	2.00	10.41	42.51
4,40	•••	5. 0 2	4.72	6.80	32.10	32.10
-2.40	Bottom	4.42				

Permanent Pool Volume Provided =

42.51 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

124.4 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

7.89 ft

Ü	RS						
	MADE BY: CHECKED BY:	DTL ひむ			DATE: 02/20/14 DATE: 64 /36 /44		PROJECT NO.: 240216-4-28-1
	PROJECT:	SR 46 PD&E			POND: A2		BASIN: Basin A
		Hv	draulic Gr	ade Line (Clearance Calcula	ations	
	t\ Fatimated take	entar alquation in	the pand (fo	r proliminari	storm sewer design)	_	7.34 ft
	i) Estimated tally	valer erevation ii	i sie pond (io	ı branınınar	, storm sewer design)		7.54 K
							·
	2) Calculation of	post-developme	nt area for HO	&L check			
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	-
							+
			·····				
		w!			Total]
		or see Post CN	l worksheet	22.05	ac		
	3) Lowest gutter e	elevation in Basi	n for HGL che	eck			
		Station	39+00	1			,
		Baseline	CL46]			
		Offset (ft) Elevation (ft)	34.50 8.79	-			
		Elovation (it)	0.70	J			
	4) Allowable Hea	d Loss = lowest	autter el - est	. tailwater el	=	1.45	5]ft
	•						_
	5) Pipe length fro	m Pond to lowes	it gutter point		900 f	τ	
	6) Rational Metho	od for contributin	g runoff - Q=0	CiA	7) Estimation of Pipe	Size	
	C =	0.66	•		HL = [4.61*(n^2)*L*(Q^2)]/(D^5.33	B) + K(V^2)/2g
	int. =	*******			LI Allowabia Haar	d Loss (ft)	1.20 trial
	A = Q =				HL = Allowable Head n = Manning's n	1 5002 (11)	<actual -="" hl="" ok<="" td=""></actual>
	B.fin alo n	0.010			L = Length (ft) Q = Runoff (cfs)		
	Manning's n ≈ Sum K =				D = Pipe diameter (fi	t)	
	V =	3.98	fps		K = coefficient for mi V = pipe velocity (fps		
					g = gravitational con		sec^2)
	8) Estimated Pipe	Diameter to sat	isfy the condi	tions =	5.5 f		
					66 i	n	

П

URS			*	
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin A	MADE BY:	DTL	11/7/13
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	75 67	04/14/12

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin A / Pond A3 - Suburban Typical					
Open Space - Fair Conditions	Pineda (5%)	B/D	69 、	0.86	59.34
Open Space - Fair Conditions	Basinger (35%)	B/D	69 -	6.08	419.52
Open Space - Fair Conditions	Felda (10%)	D	84 .	1.74	146.16
Open Space - Fair Conditions	Nittaw (50%)	D	84	8.68	729.12
Impervious (Paved parking, roads, etc.)			98 .	4.69	459.62
Pond footprint	Nittaw	D	84 ·	6.52	547.68
			TOTALS	. 28.57	2361.44

COMPOSITE CN	82.65
	•

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUI	NOFF VOLUME IS BASED ON THE	ESCS EQUATION)N AND IS A	S FOLLOWS	i:
i) determine soil storage - s		S = (1000/C)	1) - 10		(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S)	*S)	(inches)	
	· ·	P = rainfall in i	nches		
3) DETERMINE RUNOFF VOLUME	TERMINE RUNOFF VOLUME - $V(R)$				(aeres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
₹ *		(in)	(in)	(in)	(ac-ft)
	3 yr / 24 hr	5.60	2.10	3.69	8.78
SJRWMD Open Basin					
	10 yr / 24 hr	7.50	2.10	5.46	13.00
SJRWMD Open Basin SJRWMD Open Basin SJRWMD Open Basin		7.50 · 8.60 ·	2.10	5.46 6.51	13.00 15.50

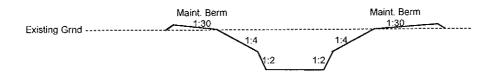
URS						
PROJECT TITLE:	SR 46 PD&E					
PROJECT NUMBER:	240216-4-28-1			DATE		
BASIN DESIGNATION:	Basin A	MADE BY:	DTL	11/7/13		
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEF	04/14/13		

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin A / Pond A3 - Suburban Typical					
Open Space - Fair Conditions	Pineda (5%)	B/D	69	0.42	28.98
Open Space - Fair Conditions	Basinger (35%)	B/D	69	2.95	203.55
Open Space - Fair Conditions	Felda (10%)	D	84	0.84	70.56
Open Space - Fair Conditions	Nittaw (50%)	D	84 ·	4.22	354.48
Impervious (Paved parking, roads, etc.)			98	· 13.62	1334.76
Pond NWL			100 .	. 5.39	539.00
Pond pervious area	Nittaw	D	84	· 1.13	94.92
······			TOTALS	28.57	2626.25

COMPOSITE CN	. 91.92
Commodificati	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ESTIMATE OF RUNOFF VOLUME

			S		
CALCULATION TABLE					
3) DETERMINE RUNOFF VOLUME - V(R)					
		P = rainfall in	inches		
2) DETERMINE RUNOFF - R	TERMINE RUNOFF - R = $(P - 0.2*S)^2 / (P + 0.8*S)$				(inches)
1) DETERMINE SOIL STORAGE -	S>	S = (1000 / C)	N)-10		(inches)


URS MADE BY: CHECKED BY:	DTL DEP	DATE: 11/7/13 DATE: 5/12/1 %	PROJECT NO.:	240216-4-28-1
CALCULATIONS FOR:	SR 46 PD&E	POND: A3	BASIN:	Basin A
Water Quality				
Total Basin Area	ı = 28	3.57 ac		
Paved Area =	13	3,62 ac		
Pond Area at NV	VL=	5.39 ac		
Α.	1.0 " Over Total Basin A	rea =	2.38 Ac-Ft	
В.	2.5 " Over Paved Area =		2,84 Ac-Ft	
Required Treat	ment (PAV) =		2.84 Ac-Ft	
Required Atten	uation (Post - Pre) =	<u> </u>	2.34 Ac-Ft	3yr / 24hr
Required Atten	uation (Post - Pre) =		2.57 Ac-Ft	10yr / 24hr
Required Atten	nation (Post - Pre) =		2.66 Ac-Ft	25yr / 24hr
Required Tream	nent Vol. + Attentuation Vol. =		5.50 Ac-Ft	25yr / 24hr SJRWMD Open Basin
	ment Vol. + Stormsewer Attentu		5.17 Ac-Ft	3yr / 24hr closed system

Stage Storage Calculations

ELEV.	Description	AREA	AVG AREA	Delta D	Delta storage (ac-ft)	Sum Storage (ac-ft)
(ft)		(ac)	(ac)	(ft)	(ac-11)	(at-it)
4.00	Pond R/W (1:2 max slope tie down)	7.02				
9.00	Out Berm	6.52				14.80
		l ľ	6,15	0.50	3.08	
8.50	Inside Berm	5.78			Г	11.73
		l f	5,69	1.00	5,69	
7.50	Provided Treatment Vol. +	5.59				6.04
	Attentuation Vol.	l t	5.59	0.10	0.54	
7.40	Required Treatment Vol. +	5.58	58			5.50
•	Attentuation Vol.		5.57	0.06	0,33	
7.34	Estimated Stormsewer	5.57				5.17
	Tailwater	``	5,53	0.42	2,32	
6.92	Required Treatment Vol.	5.49				2.84
0.74	(PAV)	''''	5,44	0.52	2.84	
6.40	Normal Water Level	5.39				
4.40		5.02			-	
4.40		J.02				
-2.40	Bottom	4.42		Į		

Required Treatment Vol. + Attentuation Vol. = 5.50 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 6.04 Ac-Ft Required Treatment Vol. + Attentuation Stage = 7.40 Ft Provided Treatment Vol. + Attentuation Stage = 7.50 Ft (1 Ft freeboard)

Required Treatment Vol. + Stormsewer Attentuation Vol. = 5.17 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 7.34 Ft

Additional 20% of Pond R/W = 8.42 ac

URS

MADE BY:

DTL

DATE:

11/7/13

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR: DEP SR 46 PD&E DATE: POND: 04130/14 А3

BASIN:

Basin A

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	13.62	0.95	12.94
Roadway Pervious Area	8.43	0.20	1.69
Pond Pervious Area	1.13	0.20	0.23
Pond Area at NWL	5.39	1.00	5.39
Total	28.57		20.24

Composite C =

0.71

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

4.78 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

7.18 ac-ft

Stage Storage Calc.

E	LEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
9.00	Out. Berm	6.52				
8.50	In. Berm	5.78		 .		
7 .40	****	5.58				
6.92	(PAV)	5.49				
6.40	(NWL)	5.39	~			42.51
			5.21	2.00	10.41	
4.40	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.02				32.10
			4.72	6.80	32.10	
-2.40	Bottom	4.42	1			

Permanent Pool Volume Provided =

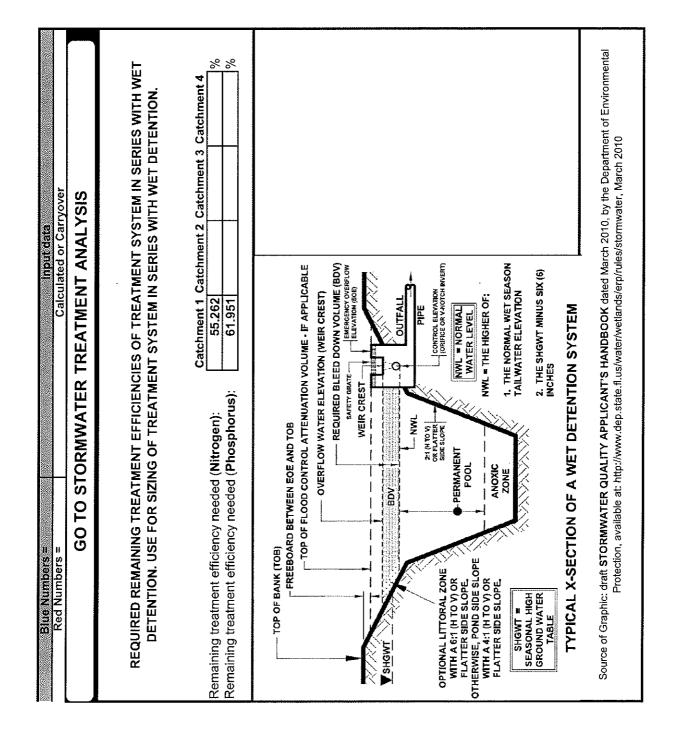
42.51 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

124.4 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth


= Permanent Pool Volume / Area at NWL =

7.89 ft

RS MADE BY: CHECKED BY: PROJECT:	DTL DEデ SR 46 PD&E			DATE: 11/7/13 DATE: 04/20/14 POND: A3		PROJECT NO.: 240216-4-28- BASIN: Basin A
		draulic Gr	ade Line (Clearance Calcul	ations	
1) Estimated tails	-			storm sewer design)		7.34 ft
2) Calculation of	post-developme	nt area for HO	àL check			
Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
						_
				Total		
			£			
	or see Post CN	I worksheet	22.05	Jac		
3) Lowest gutter	elevation in Rasi	n for HGL che	ack			
5) Lowest gatter			1			
	Station Baseline	39+00 CL46	_			
	Offset (ft) Elevation (ft)	34.50 8.79]			
	Lic valion (ity	0.75	J			
4) Allowable Hea	nd Loss = lowest	gutter el - est	. tailwater el	= [1.4	5 ft
5) Pipe length fro	om Pond to lowes	st gutter point	=	1000	ft	
,				7) Estimation of Pipe		
6) Rational Meth		y turion - Q≕ ,∵	JIA	•		
C : int. :		in/hr		$HL = [4.61*(n^2)*L*($	[Q^2)]/(D^5.3	3) + K(V^2)/2g
A =	22.05	ac		HL = Allowable Hea	d Loss (ft)	1.27 trial
Q =	94.59	cfs		n = Manning's n L = Length (ft)		<actual -="" hl="" ok<="" td=""></actual>
Manning's n				Q = Runoff (cfs)		
Sum K				D = Pipe diameter (f K = coefficient for m		
V =	3.98	ips		V = pipe velocity (fp:		
				g = gravitational con		/sec^2)
O) Fatingstad Din	- Di-watarta ad	Li_4 &	tions		f +	
8) Estimated Pipe	e Diameter to sat	usiy ine cona	uOns =	5.5 66		
				· 		

WATERSHED CHARACTERISTICS			GO TO STORMWATER TREATEMENT ANALYSIS				Blue Numbers ≔ Red Numbers ≔	Input data Calculated or Carryover	
SELECT CATCHMENT CONFIGURATION		CLICK ON C		V TO SELEC Single Cate		RATION	VIEW CATCHMENT CONFIGURATION		
CATCHMENT NO.1 CHARAC	TERISTICS:	\ If	A1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		e calculatio	n)	OVERWRITE DEFAULT (CONCENTRATIONS USING:	
	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:	
Pre-development land use:	Undeveloped / Rangeland / Forest: TN=1	150 TP=0.55	·				EMC(N): mg/L EMC(P): mg/L	mg/L mg/L	
with default EMCs	CLICK ON CELL BELOW TO SEL Highway: TN=1.640 TP=0:220	EUI	8 -				EMC(P): mg/L	mg/L	
Post-development land use: with default EMCs	riiginway: 1 n= 1,640 1 r=-0.220		Total				CLICK ON CELL E	BELOW TO SELECT:	
Total pre-development catchin	ent area:	28.57		L				ONCENTRATIONS	
Total post-development catchi		28:57	AC				OSE DEFAULT O	ONCENTRATIONS	
Pre-development Non DCIA C		* 82.65							
Pre-development DCIA percer		0.00					Mass Loading - Nitrogen:	23.125 kg/year	
Post-development Non DCIA		86.39			Pre-develo	pment Annual	Mass Loading - Phosphorus: Mass Loading - Nitrogen:	1.106 kg/year 89.516 kg/year	
Post-development DCIA perce	entage: for rainfall excess not <u>loadings)</u>	47.70 6.52	70 AC				al Mass Loading - Phosphorus:		
CATCHMENT NO.2 CHARAC				d usos foid	e calculatio			LT CONCENTRATIONS:	
CATCHMENT NO.2 CHARAC				•					
L	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L	POST: mg/L	
Pre-development land use:	CLICK ON CELL BELOW TO SEL	ECT				-	EMC(P): mg/L	mg/L	
Post-development land use:	CLICK ON GELL BLLOW TO GEL	.LO1	 				civic(i). Essential ing/c	mg/L	
Ost-development land asc.			Total	***************************************			CLICK ON CELL E	BELOW TO SELECT:	
Total pre-development catchin	nent area:		AC				USEDEFAILT	ONCENTRATIONS	
Total post-development catch			AC						
Pre-development Non DCIA C			9.,		B		14 (NI4		
Pre-development DCiA percer			%				Mass Loading - Nitrogen: Mass Loading - Phosphorus:	kg/year kg/year	
Post-development Non DCIA (Post-development DCIA perce			%				al Mass Loading - Nitrogen:	kg/year	
	for rainfall excess not loadings)		AC				I Mass Loading - Phosphorus:		
CATCHMENT NO.3 CHARAC		\ f	mixed lar	nd uses (sid	ie calculati			LT CONCENTRATIONS:	
	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:	
Pre-development land use:							EMC(N): mg/L	mg/L	
	CLICK ON CELL BELOW TO SEL	ECT.					EMC(P): mg/L	mg/L	
Post-development land use:			<u> </u>				- ALIGNA ON AFTI	TEL OW TO OFF FOT	
			Total	L		1		BELOW TO SELECT:	
Total pre-development catching Total post-development catching			AC				USE DEFAULT O	CONCENTRATIONS	
Pre-development Non DCIA C									
Pre-development DCIA percer			%		Pre-develo	pment Annua	Mass Loading - Nitrogen:	kg/year	
Post-development Non DCIA			Ŕ				Mass Loading - Phosphorus:	kg/year	
Post-development DCIA perce			%				al Mass Loading - Nitrogen:	kg/year	
Estimated Area of BMP (used	for rainfall excess not loadings)		AC		Post-develo	opment Annua	I Mass Loading - Phosphorus:	kg/year	
CATCHMENT NO.4 CHARAC	TERISTICS:	\ If	mixed lar	nd uses (sid	de calculation	on)	OVERWRITE DEFAU	LT CONCENTRATIONS:	
Į.	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:	
Pre-development land use:			8				EMC(N): mg/L	mg/L	
L	CLICK ON CELL BELOW TO SEL	.ECT					EMC(P): mg/L	mg/L	
Post-development land use:			थ Total				CLICK ON CELL F	BELOW TO SELECT:	
Total pre-development catchin	nent area:		AC	L	L	1		CONCENTRATIONS	
Total post-development catch			AC				GOC DET AUE I C	ONGLITRATIONS	
Pre-development Non DCIA C			4					<u> </u>	
Pre-development DCIA percer			%				Mass Loading - Nitrogen:	kg/year kg/year	
Post-development Non DCIA Post-development DCIA perce			%		Post-develo	pment Annua opment Annua	Mass Loading - Phosphorus: al Mass Loading - Nitrogen:	kg/year kg/year	
	for rainfall excess not loadings)		AC				al Mass Loading - Phosphorus:		

		Catchment 2 Catchment 4 0.000 0.000 0.000 ac 0.000 0.000 ac 0.000 0.000 % NO NO NO NO NO NO NO NO NO N	0.00 0.00 0.00 ft 0.000 0.000 0.000 ac-ft	System Efficiency (P) System Efficiency (N)
WET DETENTION:	/ING:	Catchment 1	12.53	■ System CAT 1 System CAT 300 400 500 ■ System CAT 3 System CAT 4 ■ System CAT 4 ■ System CAT 4 ■ System CAT 4 ■ System CAT 3
	WET DETENTION POND SERVING	Total pre-development catchment area: Total post-development catchment area: Total post-development catchment area: Average annual residence time (between 1 and 500 days): Littoral Zone used in the design: Littoral Zone efficiency credit (user specifies 10, 15, or 20%): Total Nitrogen removal required: Total Nitrogen removal efficiency provided: Total Nitrogen removal efficiency provided: Is the wet detention sufficient: Wet Detention Pond Characteristics:	Permanent Pool Depth: Minimum Permanent Pool Volume:	Treatment Efficiency (%): 0 100 200 200

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:				DATE
BASIN DESIGNATION:	Basin 1	MADE BY:	DTL	11/11/13
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEF	12/19/13

Note: Area(s) shown below accounts for additional runoff that was not included in permitted calculations for Basin 1,

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin 1 - Suburban Typical					
Additional pond footprint					
Open Space - Fair Conditions	Nittaw	D	84	1.02	85.68
New bridge section					
Open Space - Fair Conditions	Pineda	B/D	69	0.14	9.66
Open Space - Fair Conditions	Arents	. D	84	0.17	14.28
Water Surface			100	0.39	39.00
			TOTALS	1.72	148.62

COMPOSITE CN	86.41

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) 2) DETERMINE RUNOFF - R P = rainfall in inches 3) DETERMINE RUNOFF VOLUME - V(R) ------> V(R) = (R/12)*BASIN AREA(acres-feet) CALCULATION TABLE Design Storm Frequency S R V(R) Agency (in) (ac-ft) (in) (in) SJRWMD Open Basin 3 yr / 24 hr 5.60 1.57 4.07 0.58 10 yr / 24 hr 7.50 1.57 5.89 0.84 SJRWMD Open Basin 25 yr / 24 hr 8.60 1.57 6.96 1.00 SJRWMD Open Basin

URS							
PROJECT TITLE:	SR 46 PD&E						
PROJECT NUMBER:				DATE			
BASIN DESIGNATION:	Basin 1 - Suburban Typical	MADE BY:	DTL	11/11/13			
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	TIE	12/19/13			

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin 1 - Suburban Typical					
Open Space - Fair Conditions	Nittaw (90%)	D	84 .	3.88	325.92
Open Space - Fair Conditions	Arents (10%)	D	84 、	0.43	36.12
Impervious (Paved parking, roads, etc.)		N/A	98 、	7.47	732.06
Pond NWL area		NIA	100 .	1.96	196.00
Pond pervious area	Nittaw	а	84 ·	1.08	90.72
			TOTALS	14.82	1380.82

COMPOSITE CN	93.17

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches 3) DETERMINE RUNOFF VOLUME - V(R) ------V(R) = (R/12)*BASIN AREA(acres-feet) CALCULATION TABLE Design Storm Frequency P S R V(R) Agency (in) (in) (in) (ac-ft) SJRWMD Open Basin 3 yr / 24 hr 0.73 4.81 5.94 5.60 10 yr / 24 hr 7.50 0.73 6.69 8.26 SJRWMD Open Basin 25 yr / 24 hr 0.73 7.78 SJRWMD Open Basin 8.60 9.61

filename: Basin 1_suburban.xls worksheet: POST CN

URS				
MADE BY:	DTL	DATE: 11/11/13	JOB NO.	
CHECKED BY:		DATE:	SHEET NO.	
CALCULATIONS FOR:	Basin 1	POND: MOD Pond 1	BASIN:	Basin 1 - Suburban Typical

Water Quality

Total Basin Area = 14.82 ac 7.47 ac Paved Area = Pond Area at NWL = 1.96 ac

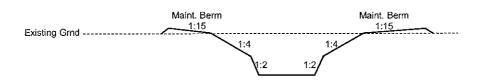
1.0 "Over Total Basin Area = 1.24 Ac-Ft A. 2.5 "Over Paved Area = 1.56 Ac-Ft

Required Treatment (PAV) = 1.56 Ac-Ft SJRWMD Open Basin

Stage Storage Calculations

ELEV. (ft) (NGVD)	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
11,00	Out Berm	2.68	2.46	1.00	2.46	8.31
10.00	Inside Berm	2.24	2.46	1.00	2.46	5.85
9.00	•	2,13	2.19	1.00	2.19	3.67
9.00		2.13	2.09	0.82	1.71	3.07
8.18	PAV	2.04	2.01	0.68	1.27	1.96
7.60		1.98	2.01	0.68	1.37	0.59
			1.97	0.20	0.39	
7.50		1.97	1.97	0.10	0.20	0.20
7.40	NWL	1.96				
5.40		1.75				
-1.00	Bottom	1.44				

Bleed Down Volume


1/2 the reo'd PAV

0.5 * 1.56

0,78 Ac-Ft

Volume remaining in pond after recovery of 1/2 PAV

1.18 Ac-Ft

URS

MADE BY: CHECKED BY:

DTL DZF DATE:

11/11/13 JOB NO.

12/19/13 SHEET NO.

CALCULATIONS FOR:

SR 46 PD&E

BASIN:

Basin 1 - Suburban Typical

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	7.47、	0.95	7.10
Roadway Pervious Area	4.31	0.20	0.86
Pond Pervious Area	1.08	0.20	0.22
Pond Area at NWL	1.96 -	1.00 \	1.96
Total	14.82		10.13

Composite C =

0.68

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

2.40 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provid = 1.5 x Min Perm Pool Vol. =

3.59 ac-ft

Stage Storage Calc.

ELEV		AREA	AVG	Delta	Delta	Sum
179			AREA	D	storage	Storage
(ft)		(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
11.00 · C	Out. Berm	2.68				
10.00	In. Berm	2.24				
9.00		2.13			*****	
8.18	(PAV)	2.04 ·				
7.40 `	(NWL)	1.96	1.86	2.00	. 3.71	13.92
5.40		1.75				10.21
-1.00	Bottom	1.44	1.60	6.40	√ 10.21	

Permanent Pool Volume Provided =

13.92 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P :

81.3 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See 40C-42.026)

Mean Depth

= Permanent Pool Volume / Area at NWL =

7.10 ft

```
* Permitted condition values obstained from
          Basin Name: Basin 1
          Group Name: BASE
                                                        Bridge Replacement Project
SIRWMD Permit No. 40-117-95925-5
          Simulation: 10YR24HR
           Node Name: BNDRY
          Basin Type: SCS Unit Hydrograph
     Unit Hydrograph: Uh323
 Peaking Fator: 323.0
Spec Time Inc (min): 8.24
 Comp Time Inc (min): 5.00
       Rainfall File: Flmod
Rainfall Amount (in): 7.500
Storm Duration (hrs): 24.00
             Status: Onsite
  Time of Conc (min): 61.80
Time Shift (hrs): 0.00
Area (ac): 8.570
Vol of Unit Hyd (in): 1.001
        Curve Number: 85.000
                                  => 15.83 + 40.07 = 55.90 cfs total pre-discharge
            DCIA (%): 0.000
      Time Max (hrs): 12.58
  Flow Max (cfs): 15.829
Runoff Volume (in): 5.728
 Runoff Volume (ft3): 178199.032
          Basin Name: Basin 1
          Group Name: BASE
          Simulation: 25YR24HR
           Node Name: BNDRY
          Basin Type: SCS Unit Hydrograph
     Unit Hydrograph: Uh323
       Peaking Fator: 323.0
 Spec Time Inc (min): 8.24
 Comp Time Inc (min): 5.00
Rainfall File: Flmod
Rainfall Amount (in): 8.600
Storm Duration (hrs): 24.00
             Status: Onsite
  Time of Conc (min): 61.80
    Time Shift (hrs): 0.00
Area (ac): 8.570
Vol of Unit Hyd (in): 1.001
      Curve Number: 85.000
  Runoff Volume (in): 6.789
 Runoff Volume (ft3): 211203.878
          Basin Name: Basin 1
          Group Name: BASE
          Simulation: 3YR24HR
           Node Name: BNDRY
          Basin Type: SCS Unit Hydrograph
     Unit Hydrograph: Uh323
       Peaking Fator: 323.0
Spec Time Inc (min): 8.24 Comp Time Inc (min): 5.00
       Rainfall File: Flmod
Rainfall Amount (in): 5.600
Storm Duration (hrs): 24.00
Status: Onsite
Time of Conc (min): 61.80
Time Shift (hrs): 0.00
Area (ac): 8.570
Vol of Unit Hyd (in): 1.001
                                   10.92 cfs + 26.72 = 37.64 cfs total discharge.
        Curve Number: 85.000
            DCIA (%): 0.000
      Time Max (hrs): 12.58 Flow Max (cfs): 10.917
  Runoff Volume (in): 3.924
 Runoff Volume (ft3): 122072.790
```

SR 46 PD&E MODIFIED BASIN 1 PRE-DEVELOPMENT CONDITIONS FOR ADDITIONAL AREAS NOT PERMITTED BASIN SUMMARY REPORT

PRE/POST DISCHARGE SUMMARY

WILBUR SMITH

PROJECT TITLE: SR 46
PROJECT NUMBER: 24016315201

DATE:

October 6, 2009

CALC. BY:

CHECKED BY:

PQS

BASIN 1 - SR 46

Simulation	Name	Existing Conditions Max. Inflow (cfs)	Proposed Conditions Max inflow (cfs)	Δ Discharge = (Pre - Post)**
25 YR - 24 HR	OUTFALL	¥ 46.11	48,09	-1.98
10 YR - 24 HR	OUTFALL	¥ 40.07	41.10	-1,03
3 YR - 24 HR	OUTFALL	¥ - 26.72	23.50	3.22

BASIN 2 - SR 46

Simulation	Name	Existing Conditions Max. Inflow (cfs)	Proposed Conditions Max inflow (cfs)	Δ Discharge = . (Pre - Post)*
25 YR - 24 HR	OUTFALL	91.17	91.38	-0.21
10 YR - 24 HR	OUTFALL	82.19	78.64	3.55
3 YR - 24 HR	OUTFALL	59.00	45.94	12.06

^{*} Increase of 0.21 cfs for the 25yr/24hr storm will not result in adverse impacts as it is less than 0.5% of the total discharge.

^{**} increase of 1.98 cfs for the 25yr/24hr storm will not result in adverse impacts as it is loss than 0.2% of the lowest annual mean discharge rate for the St. Johns River (years 2005 thru 2008) at the nearest gage location (see attached map and documentation).

```
Node: Pond 1
                                                Status: Onsite
      Name: Basin 1
                           Type: SCS Unit Hydrograph CN
     Group: BASE
     Unit Hydrograph: Uh323
Rainfall File:
                                  Peaking Factor: 323.0
                              Storm Duration(hrs): 0.00
  Rainfall Amount(in): 0.000
                               Time of Conc(min): 17.00
                                 Time Shift(hrs): 0.00
          Area(ac): 14.82 ·
                              Max Allowable Q(cfs): 999999.00
       Curve Number: 93.17 -
           DCIA(%): 0.00
______
Name: BNDRY
                      Base Flow(cfs): 0.000
                                            Init Stage(ft): 5.000
                                            Warn Stage(ft): 10.000
   Group: BASE
    Type: Time/Stage
Boundary Conditions were referenced from SR 46 over Lake Jesup project
FPID 240163-1-52-01
SJRWMD Permit No. 40-117-95925-5
   Time(hrs)
              Stage(ft)
       0.00
       24.00
                 5.500
       48.00
                  6.000
       72.00
                 6.400
    Name: POND 1
                    Base Flow(cfs): 0.000
                                           Init Stage(ft): 7.400
   Group: BASE
                                            Warn Stage(ft): 10.000
    Type: Stage/Area
Initial Stage = NWL Elevation
Warning Stage = Inside Berm Elevation
               Area(ac)
       7.400 . 1.9600 •
      10.000
                 2.2400 .
                 2,6800 ,
      11.000 .
From Node: POND 1
      Name: OCS-1 ORIFICE
                        To Node: BNDRY
     Group: BASE
      Flow: Both
                          Count: 1
      Type: Vertical: Mavis
                        Geometry: Circular
             Span(in): 4.00
             Rise(in): 4.00
    Invert(ft): 6.900
Control Elevation(ft): 7.400
                                TABLE
         Bottom Clip(in): 0.000
           Top Clip(in): 0.000
      Weir Discharge Coef: 3.200
    Orifice Discharge Coef: 0.600
      Name: OCS-1 Weir
                       From Node: POND 1
                        To Node: BNDRY
     Group: BASE
                          Count: 1
      Flow: Both
      Type: Vertical: Mavis
                       Geometry: Trapezoidal
        Bottom Width(ft): 18.60
    Left Side Slope(h/v): 10.00
Right Side Slope(h/v): 10.00
    Invert(ft): 8.180
Control Elevation(ft): 8.180
    Struct Opening Dim(ft): 9999.00
                                TABLE
```

Bottom Clip(ft): 0.000 Top Clip(ft): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600

Name: 10YR24HR

Filename: I:\PROJECTS\12722145 SR46 PDE\DRAINAGE\BASIN 1\ICPR\10YR24HR.R32

Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 7.50

Time(hrs) Print Inc(min)

100.000 1.00

Name: 25YR24HR

Filename: I:\PROJECTS\12722145 SR46 PDE\DRAINAGE\BASIN 1\ICPR\25YR24HR.R32

Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 8.60

Time(hrs) Print Inc(min)

100.000 1.00

Name: 3YR24HR

Filename: I:\PROJECTS\12722145 SR46 PDE\DRAINAGE\BASIN 1\ICPR\3YR24HR.R32

Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 5.60

Time(hrs) Print Inc(min)

100.000 1.00

Name: 10YR24HR Hydrology Sim: 10YR24HR Filename: I:\PROJECTS\12722145 SR46 PDE\DRAINAGE\BASIN 1\ICPR\10YR24HR.I32

Execute: Yes

Restart: No

Patch: No

Alternative: No

Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000

Delta Z Factor: 0.00500 End Time(hrs): 30.00 Max Calc Time(sec): 60,0000 Boundary Flows:

Boundary Stages:

Time(hrs) Print Inc(min)

30.000 5.000

Group Run RASE Yes

Name: 25YR24HR Hydrology Sim: 25YR24HR

Filename: I:\PROJECTS\12722145 SR46 PDE\DRAINAGE\BASIN 1\ICPR\25YR24HR.I32

Execute: Yes Alternative: No

Restart: No

Patch: No

Max Delta Z(ft): 1.00

Delta Z Factor: 0.00500

Time Step Optimizer: 10.000

SR 46 PD&E MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS INPUT ALL REPORT

Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000

End Time(hrs): 30.00 Max Calc Time(sec): 60.0000 Boundary Flows:

Boundary Stages:

Print Inc(min)

5.000 30,000

Time(hrs)

Run

Group BASE Yes

Name: 3YR24HR Hydrology Sim: 3YR24HR

Filename: I:\PROJECTS\12722145 SR46 PDE\DRAINAGE\BASIN 1\ICPR\3YR24HR.I32

Execute: Yes Alternative: No

Restart: No

Patch: No

Max Delta Z(ft): 1.00

Time Step Optimizer: 10.000 Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000 Boundary Stages:

Delta Z Factor: 0.00500

End Time(hrs): 30.00 Max Calc Time(sec): 60.0000 Boundary Flows:

Print Inc(min) Time(hrs)

30.000 5.000

BASE Yes

Usschause Hed Condition	dition non-permoted area	55.90 54.48 34.64
	+ ad	u z t
	Max Outflow cfs	0.00 45.54 0.00 52.73 0.00 31.70
	Max Time Outflow hrs	0.00 12.31 0.00 12.31 0.00
	Max Inflow cfs	45.54 59.05 52.73 68.19 31.70 43.15
	Max Time Inflow hrs	12.31 12.08 12.31 12.31 12.34 12.34
	Max Surf Area ft2	0.00 92331,98 0.00 92601.66 0.00
	x Delta Stage ft	0.0003 0.0050 0.0003 0.0050 0.0050
	ax Warning Max De ge Stage St ft ft	10.00 10.00 10.00 10.00 10.00
	Max Stage ft	0.63 0.63 0.63 0.63 0.63 0.77
	Max Time Stage hrs	30.00 12.31 30.00 12.31 30.01
CONDITIONS	Simulation	10YR24HR 10YR24HR 25YR24HR 25YR24HR 3YR24HR 3YR24HR
)EVELOPMENT	Group	BASE BASE BASE BASE BASE BASE
SR 46 PD&E MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS MODIFIED POND 1 NODE MIN / MAX REPORT	Name	ENDRY POMD 1 ENDRY POMD 1 ENDRY ENDRY

Node: Pond 1 Name: Basin 1 Status: Onsite Type: SCS Unit Hydrograph CN Group: BASE

Unit Hydrograph: Uh323

Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 14.82 Curve Number: 93.17 DCIA(%): 0.00

Peaking Factor: 323.0 Storm Duration(hrs): 0.00 Time of Conc(min): 10.00 Time Shift(hrs): 0.00 Max Allowable O(cfs): 999999.00

Name: BNDRY Base Flow(cfs): 0.000 Group: BASE

Init Stage(ft): 5.000 Warn Stage(ft): 10.000

Boundary Conditions were referenced from SR 46 over Lake Jesup project

Type: Time/Stage

FPID 240163-1-52-01 SJRWMD Permit No. 40-117-95925-5 Time(hrs) Stage (ft)

1 11(C (111 5)	Deage (Le)
0.00	5.000
24.00	5.500
48.00	6.000
72.00	6.400

Name: POND 1 Group: BASE

Type: Stage/Area

Initial Stage = Weir Elevation
Warning Stage = Inside Berm Elevation

Stage(ft) Area(ac) 7.400 10.000 2,2400 11.000 2.6800

From Node: POND 1 To Node: BNDRY Name: OCS-1 ORIFICE Group: BASE Count: 1 Flow: Both Geometry: Circular Type: Vertical: Mavis

Span(in): 4.00 Rise(in): 4.00 Invert(ft): 6.900 Control Elevation(ft): 7.400

Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600

TABLE

Name: RECOVERY Hydrology Sim:

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 1\ICPR\RECOVERY.I32

Execute: Yes Alternative: No

Restart: No

Patch: No

Max Delta Z(ft): 1.00

Time Step Optimizer: 10.000

Delta Z Factor: 0.00500

SR 46 PD&E MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS MODIFIED POND 1 RECOVERY ANALYSIS INPUT ALL DATA REPORT

> Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000 Boundary Stages:

> > 5.000

End Time(hrs): 30.00 Max Calc Time(sec): 60.0000 Boundary Flows:

Time(hrs) Print Inc(min) 30.000

Run Group BASE Yes

SR 46 PD&E MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS MODIFIED FOND 1 RECOVERY ANALYSIS NODE TIME SERIES REPORT

	Lecovers 12 PAU
Total Vol Out af	0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.75 0.77
Total Vol In af	
Total Outflow cfs	0.27 0.27
Total Inflow cfs	
Surface Area ft2	87351.37 87351.37 87346.98 87338.22 87338.22 87329.48 87329.48 87329.46 87310.71 87312.06 87312.06 87312.06 87312.06 87312.06 87312.06 87312.06 87312.06 87312.06 87312.06 87312.06 87259.04 87260.23
Warning Stage ft	
Stage	7. 82 7. 83 7. 80 7.
Time hrs	27.35 27.43 27.45 27.65 27.65 27.65 27.65 27.65 28.27.93 27.93 27.
Group	BASE BASE BASE BASE BASE BASE BASE BASE
Node	POND 1
imulation	RECOVERY

Node: Pond 1 Status: Onsite Name: Basin 1 Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh323 Peaking Factor: 323.0 Storm Duration(hrs): 0.00 Time of Conc(min): 17.00 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 14.82 Curve Number: 93.17 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.00 DCIA(%): 0.00 ________ Init Stage(ft): 5.000 Name: BNDRY Base Flow(cfs): 0.000 Warn Stage(ft): 10.000 Group: BASE Type: Time/Stage Boundary Conditions were referenced from SR 46 over Lake Jesup project FPID 240163-1-52-01 SJRWMD Permit No. 40-117-95925-5 Time(hrs) Stage(ft) 0.00 5.000 24.00 5.500 6.000 48.00 72,00 6.400 Base Flow(cfs): 0.000 Init Stage(ft): 8.180 ★ West Line Name: POND 1 Warn Stage(ft): 10.000 Group: BASE Type: Stage/Area Initial Stage = Weir Elevation
Warning Stage = Inside Berm Elevation Stage(ft) Area(ac) 7,400 1.9600 10.000 2.2400 11.000 2.6800 Name: OCS-1 ORIFICE of Group: BASE Assumed Flow: None & Logged Type: Vertical: Mavis From Node: POND 1 To Node: BNDRY Count: 1 Geometry: Circular Span(in): 4.00 Rise(in): 4.00 Invert(ft): 6.900 Control Elevation(ft): 7.400 TABLE Bottom Clip(in): 0.000 Top Clip(in): 0.000
Weir Discharge Coef: 3.200
Orifice Discharge Coef: 0.600 Name: OCS-1 Weir From Node: POND 1 Group: BASE To Node: BNDRY Group: BASE Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 18.60 Left Side Slope(h/v): 10.00 Right Side Slope(h/v): 10.00 Invert(ft): 8.180

Control Elevation(ft): 8.180

SR 46 PD&E MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS MODIFIED POND 1 INPUT ALL DATA REPORT TAILWATER CALCULATIONS

Struct Opening Dim(ft): 9999.00

TABLE

Bottom Clip(ft): 0.000 Top Clip(ft): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600

Name: 10YR24HR

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 1\ICPR\10YR24HR.R32

Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 7.50

Print Inc(min) 100.000 1.00

Name: 3YR24HR

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 1\ICPR\3YR24HR.R32

Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 5.60

Time(hrs) Print Inc(min) 1.00

Hydrology Sim: 10YR24HR

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 1\ICPR\10YR24HR.I32

Execute: Yes

Restart: No Alternative: No

Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000

Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000 End Time(hrs): 30.00 Max Calc Time(sec): 60.0000

Boundary Stages:

Time(hrs) Print Inc(min) 30.000 5.000

Group BASE Yes

Patch: No

Delta Z Factor: 0.00500

Boundary Flows:

Hydrology Sim: 3YR24HR Name: 3YR24HR

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 1\ICPR\3YR24HR.I32

Execute: Yes Alternative: No

Restart: No

Max Delta Z(ft): 1.00

Delta Z Factor: 0.00500

Time Step Optimizer: 10.000 Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000

End Time(hrs): 30.00 Max Calc Time(sec): 60.0000

Boundary Stages:

Boundary Flows:

Time(hrs) Print Inc(min)

5.000 30.000

SR 46 PD&E MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS MODIFIED POND 1 INPUT ALL DATA REPORT TAILWATER CALCULATIONS

Group Run
----BASE Yes

SR 46 PD&E
MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS
MODIFIED POND 1
NODE TIME SERIES REPORT

אסוונים איינים א	Node Group Time Stade Warning Surface Total Total Total Tota
	ulation

															2092 1 99.9	575	Commen	Se 18 18 18 18 18 18 18 18 18 18 18 18 18				A MANUAL MICHAEL MICHAEL		のうりはよりでは、	e P	-										
Total Vol Out	а£	0.62	0.64	0.67	0.69	0.72	0.74	0.77	0.80	0.84	0.88	0.94	1.02	1.13	1.28	1.46	1.67	1.87	2.11	2.29	2.50	2.68	2.85	3.01	3.15	3.26	3.37	3.47	3.57	3.64	۲,	۲.	3.85	3.90	3.96	4.01
Total Vol In	af	06.0	0.93	96.0	1.00	1.03	1.07	1.12	1.18	1.25	1.37	1.52	1.72	1.96	2.26	2.55	2.85	3.04	3.27	3.42	3.58	3.71	3.82	3.92	4.00	4.06	4.13	4.18	4.23	4.26	4.30	4.34	4.37	4.41	4.44	4.46
Total Outflow	cfs	3.24	3.37	3.51	3.64	3.80	4.03	4.38	4.92	5.88	7.54	9.94	13.44	18.10	23.79	28.26	30.88	31.69	31.15	29.79	27.73	25.43	23.06	20.78	18.67	16.97	15.23	13.67	12.29	11.16	10.19	9.24	8.55	7.92	7.37	6 87
Total Inflow	cfs	4.35	4.45	4.58	4.72	5.19	6.21	7.35	9.97	14.89	20.03	25.33	32.75	39.73	43.14	40.46	35.97	32.27	27.49	23.81	20.39	17.27	14.62	12.47	10.66	9.37	8.14	7.06	6.21	5.67	5.33	5.04	4.82	4.53	4.26	4.07
Surface Area	£F2	89684.72	89702.01	89719.02	89735.90	89754.72	89782.58	89822.99	89883.73	89985.00	90146,56	90356.15	90626.37	90943.35	91285.04	91528.19	91662.42	91703.14	91676.20	91607.64	91500.72	91376.89	91243.82	91109.93	90979.47	90870.25	90752.91	N	90541.49	90454.37	90376.49	90297.03	90237.43	90181.54	90130.36	90083.77
Warning Stage	£t	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Stage	ft	8.32	8.32	8.33	8.33	8.33	8.34	8.35	8.36	8.38	8.42	8.46	8.52	8.59	8.66	8.71	8.74	8.75	8.74	8.73	8.71	8.68	8.65	8.62	8.59	8.57	8.55	8.52	8.50	8.48	8.47	8.45	8.44	8.42	8.41	8.40
Time	hrs	11.02	11.10	11,18	11.27	11.35	11.43	11.52	11.60	11.68	11.76	11.84	11.92	12.00	12.09	12.17	12.26	12.34	12.43	12.50	12.59	12.67	12.76	12.84	12.93	13.00	13.09	13.17	13.26	13.34	13.42	13.51	13.59	13.67	13.76	13.84
Group		BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE							
Node		POND 1	POND 1	POND 1	POND 1	POND 1	POND 1	FOND 1	POND 1	POND 1	POND 1	POND 1	POND 1	POND 1	POND 1	POND 1	POND 1	POND 1	FOND 1	POND 1	FOND 1	POND 1	POND 1	FOND 1	POND 1	FOND 1	POND 1	POND 1	POND 1							
ulation		3YR24HR	3 YR2 4HR	3YR24HR	3 YR2 4 HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3 YR2 4HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR	3YR24HR						

T60v11.RPT 1/16/2001

3-4R (WITH MINDE LOSSES,

STORM SEWER HYDRAULICS System: Basin-1

Organization: Wilbur Smith Associates, Inc.

Lake Jessup

Number:

PROJECT

9/18/2009

Outfall Tailwater Elevation:

Storm Event Runoff Coefficients
Zone Freq Area 1 Area 2 Area 3 CONDITIONS K

Page: 1

Flow (cfs) Inlet Elevations Pipe Elevations Fall Pipe Pipe	Flow (cfs) Inlet Elevations Pipe Elevations Flow (cfs) Inlet Elevations Pipe Elevations Fight Pipe	V (cfs) Inlet Elevations Pipe Elevations Fight Float Pipe Float Float Sum(Qb) Inlet HGL HGL HGL Height (%) CIA Crown Line (ff) (in) (%) TOTAL Clear. Jnc Loss Flow Line (ff) (in) (%) 23.91 8.50 8.93 8.76 0.061 36 0.1095 23.91 -0.43 0.11 1.00 0.70 0.300 36 0.5425 0.00 8.50 9.08 8.99 8.93 0.066 36 0.0666 18.64 -0.58 0.09 3.00 1.00 2.000 36 2.0202 18.64 -0.58 0.09 3.00 1.00 2.000 36 2.0202 2.71 -0.03 11.68 8.93 2.750 18 4.5836 0.00 12.80 12.83 11.40 5.00 6.400 18 10.665 2.71 -0.03 11.40	V (cfs) Inlet Elevations Pipe Elevations Sum(Qb) Inlet HGL HG	Crfs) Inlet Elevations Pipe Elevations Sum(Qb) Inlet HGL HGL<	Inlet Elevations Pipe Elevations Fall Pipe Pipe	Inlet Elevations Pipe Elevations Fall Pipe Pipe	Inlet Elevations Pipe Elevations Fight Pipe Pip	Inlet Elevations Pipe Elevations Fall Pipe	Inlet Elevations Pipe Elevations Fall Pipe Hot.	Inject Elevations Pipe Elevations Pipe	Inlet Elevations Pipe Elevations Fall Pipe Hol.	Inlet Elevations Pipe Elevations Fall Pipe Hol. Inlet HGL HGL HGL Width FL Crown Line (ft) (in) (%) 8.50 8.93 8.82 8.76 0.061 36 0.1095 8.50 8.93 8.83 0.066 36 0.6425 8.50 9.08 8.99 8.93 0.066 36 0.0666 8.50 9.08 8.99 8.93 0.066 36 0.0666 8.50 9.08 8.99 8.93 0.066 36 0.0666 8.50 9.08 8.99 8.93 0.066 36 0.0666 9.09 1.15 11.40 5.00 6.400 1.8 10.6667 9.03 1.15 11.40 5.00 6.400 0.300 30 0.1129 8.63 9.38 9.31 9.08 0.234 30 0.1027 9.66 9.38 0.274 30 0.0921 9.75 0.07 4.00 3.70 0.300 30 0.1007 1.36 0.12 9.66 9.38 0.274 30 0.1007 1.36 0.12 9.66 9.38 0.274 30 0.1007 1.36 0.12 8.20 4.80 3.400 24 1.6505 1.36 0.13 8.70 8.40 0.300 18 0.2542 1.36 10.72 10.61 10.34 0.268 19 0.1848 2.84 0.11 8.40 8.20 0.200 30 0.1379 2.84 0.11 8.40 8.20 0.200 30 0.1379 2.84 0.11 18.49 11.29 7.200 18 2.3684 1.72 0.62 17.90 10.70 18 2.3684 1.72 0.62 17.90 10.70 18 2.3684 1.72 0.62 17.90 10.70 18 2.3684 2.83 19.11 18.49 11.29 7.200 18 2.3684 2.83 19.11 18.49 12.90 18 2.3684 2.83 15.50 10.70 10.70 18 2.3684 2.84 0.11 8.40 12.20 18 2.3684 2.84 0.11 8.40 12.20 18 2.3684 2.84 0.11 8.40 12.20 18 2.3684 2.84 0.11 8.40 12.20 18 2.3684 2.84 0.11 8.40 12.20 18 2.3684 2.84 0.11 8.40 12.20 18 2.3684 2.84 0.11 8.40 12.20 18 2.3684 2.83 19.11 18.49 11.29 7.200 18 2.3684 2.83 19.11 18.49 11.29 7.200 18 2.3684 2.83 19.11 18.40 12.20 18 2.3684 2.83 19.11 18.49 11.29 7.200 2.84 0.11 8.20 0.200 2.85 17.90 0.200 2.85 17.90 0.200 2.85 17.90 0.200 2.85 17.90 2	Inlet Elevations Pipe Elevations Fight	Inlet Elevations Pipe Elevations Fall Pipe	Inject Elevations Pipe Elevations Fipe Floating
(Qb) Sum(Qb) Inlet HGL. HGL. TOTAL Clear. Jnc Loss Flow Line (ft) 0.00 0.00 8.50 8.93 8.82 8.76 0.061 23.91 -0.43 0.11 1.00 0.70 0.300 0.00 0.00 8.50 9.08 8.99 8.93 0.066 18.64 -0.58 0.09 3.00 1.00 2.000 0.00 0.00 12.80 12.83 11.68 8.93 2.750 2.71 -0.03 1.15 11.40 5.00 6.400	(Qb) Sum(Qb) Inlet HGL. HGL. TOTAL Clear. Jnc Loss Flow Line (ff) 0.00 0.00 8.50 8.93 8.82 8.76 0.061 23.91 4.00 0.70 0.70 0.300 0.00 8.50 9.08 8.99 8.93 0.066 18.64 0.58 0.09 3.00 1.00 2.000 0.00 12.80 12.83 11.68 8.93 2.750 2.71 -0.03 1.15 11.40 5.00 6.400 2.71 -0.03 1.15 11.40 5.00 6.400	Sum(Qb) Inlet HGL HGL CIA Clar. Jnc Loss Flow Line (ft) TOTAL Clear. Jnc Loss Flow Line (ft) 0.00 8.50 8.93 8.82 8.76 0.061 23.91 -0.43 0.11 1.00 0.70 0.300 0.00 8.50 9.08 8.99 8.93 0.066 18.64 -0.58 0.09 3.00 1.00 2.000 18.64 -0.58 0.09 3.00 1.00 2.000 2.71 -0.03 12.83 11.68 8.93 2.750 2.71 -0.03 1.15 11.40 5.00 6.400 2.71 -0.03 1.15 11.40 5.00 6.400 2.71 -0.03 3.70 0.300 6.20 44.93 -0.75 0.07 4.00 3.70 0.300	Sum(Qb) Inlet HGL Crown Line CIA CIA Clear. Jnc Loss Flow Line (ft) 0.00 8.50 8.93 8.82 8.76 0.061 23.91 0.00 8.50 9.08 8.99 8.93 0.066 18.64 0.58 0.09 3.00 1.00 2.000 0.00 12.80 12.83 11.68 8.93 2.750 2.71 0.03 11.15 11.40 5.00 6.50 14.93 0.075 0.07 4.00 3.70 0.300 14.93 0.075 0.07 4.00 3.70 0.300 0.00 8.78 9.72 9.66 9.38 0.274	Sum(db) Inlet HGL HGL Sum(db) Inlet HGL Crown Line TOTAL Clear. Jnc Loss Flow Line (ff) 0.00 8.50 8.93 8.82 8.76 0.061 23.91 -0.43 0.11 1.00 0.70 0.300 0.00 8.50 9.08 8.99 8.93 0.066 18.64 -0.58 0.09 3.00 1.00 2.000 0.00 12.80 12.83 11.68 8.93 2.750 2.71 -0.03 1.15 11.40 5.00 6.400 2.71 -0.03 1.15 11.40 5.00 6.400 2.71 -0.03 1.15 11.40 5.00 6.20 14.93 -0.75 0.07 4.00 3.70 0.300 13.48 -0.94 0.06 6.80 6.50 6.27 13.48 -0.94 0.06 6.80 6.50 6.27	(Qb) Inlet HGL Crown Line (H) NAL Clear, Jnc Loss Flow Line (H) OG 8.50 8.93 8.82 8.76 0.061 9.1 -0.43 0.11 1.00 0.70 0.300 OG 8.50 9.08 8.99 8.93 0.066 OG 12.80 12.83 11.68 8.93 2.750 OG 12.80 12.83 11.69 6.50 OG 8.63 9.38 9.31 9.08 0.234 OG 8.63 9.36 9.31 9.08 0.234 OG 8.78 9.72 9.66 9.38 0.274	(Qb) Inlet HGL Crown Line TAL Clear. Jnc Loss Flow Line (ft) 00 8.50 8.93 8.82 8.76 0.061 91 -0.43 0.11 1.00 0.70 0.300 00 8.50 9.08 8.99 8.93 0.066 6.00 12.80 12.83 11.68 8.93 2.750 71 -0.03 1.15 11.40 5.00 6.40 1.93 -0.75 0.07 4.00 3.70 0.300 1.93 -0.75 0.07 4.00 3.70 0.300 8.48 0.94 0.06 4.30 4.00 0.300 8.48 -0.94 0.06 4.30 4.00 0.300 8.40 1.70 10.34 10.22 9.72 0.506	(Qb) Inlet HGL Crown Line (H) NAL Clear. Jnc Loss Flow Line (H) OG 8.50 8.93 8.82 8.76 0.061 91 -0.43 0.11 1.00 0.70 0.300 OG 8.50 9.08 8.99 8.93 0.066 OG 12.80 12.83 11.68 8.93 2.750 OG 12.80 12.83 11.60 6.40 OG 8.53 9.38 9.31 9.08 0.234 OG 8.54 9.72 9.66 9.38 0.274 OG 8.78 9.72 9.66 9.38 0.274 OG 11.70 10.34 10.22 9.72 0.506 OG 11.10 10.34 10.20 6.80 OG 11.10 10.87 10.83 10.72 0.119	(Qb) Inlet HGL Crown Line (ft) NAL Clear. Jnc Loss Flow Line (ft) 00 8.50 8.93 8.82 8.76 0.061 91 -0.43 0.11 1.00 0.70 0.300 00 8.50 9.08 8.99 8.93 0.066 6.40 -0.58 0.09 3.00 1.00 2.000 00 12.80 12.83 11.68 8.93 2.750 71 -0.03 1.15 11.40 5.00 6.400 00 8.63 9.38 9.31 9.08 0.234 1.93 -0.75 0.07 4.00 3.70 0.300 00 8.78 9.72 9.66 9.38 0.274 1.93 6.50 6.20 6.20 00 8.78 9.72 9.66 9.38 0.274 0.00 11.70 10.34 10.22 9.72 0.506 2.14 1.36 0.12 8.20 4.80 3.400 2.14 1.36 0.12 8.20 4.80 3.400 0.20 11.00 10.87 10.20 8.90	Inlet HGL	Inlet HGL	Inlet HGL	Inlet HGL	Inlet HGL	(Qb) Inlet HGL Crown Line (H)	Inlet HGL
CIA TOTAL Clear. Jnc Loss Flow Li Crown L Crown L Clear. Jnc Loss Flow Li Clear. Jnc Loss B.82 4.00 23.91 -0.43 0.11 1.00 6.00 18.64 -0.58 0.09 3.00 6.00 12.80 12.83 11.68 2.71 -0.03 1.15 11.40	CIA TOTAL Clear. Jnc Loss Flow Lit Crown L Crown L Co. 0.00 0.00 8.50 8.93 8.82 4.00 0.00 8.50 9.08 8.99 8.99 18.64 0.58 0.09 3.00 0.00 0.00 12.80 12.83 11.68 12.71 0.00 1.15 11.40 12.00 0.00 0.00 8.63 9.38 9.31	TOTAL Clear. Jnc Loss Flow Lin Crown L ClA 0.00 8.50 8.93 8.82 4.00 23.91 -0.43 0.11 1.00 0.00 8.50 9.08 8.99 18.64 -0.58 0.09 3.00 0.00 12.80 12.83 11.68 2.71 -0.03 1.15 11.40 14.93 -0.75 0.07 4.00 10.00 8.63 9.38 9.31 14.93 -0.75 0.07 4.00	TOTAL Clear. Jnc loss Flow Life 10.00 8.50 8.93 8.82 8.82 23.91 -0.43 0.11 1.00 0.00 8.50 9.08 8.99 18.64 -0.58 0.09 3.00 0.00 12.80 12.83 11.68 2.71 -0.03 1.15 11.40 0.00 8.63 9.38 9.31 14.93 -0.75 0.07 4.00 0.00 8.78 9.72 9.66	CIA TOTAL Clear. Jnc Loss Flow Lin Loss 8.50 8.93 8.82 23.91 -0.43 0.11 1.00 0.00 8.50 9.08 8.99 18.64 -0.58 0.09 3.00 0.00 12.80 12.83 1.15 12.90 2.71 -0.03 1.15 11.40 0.00 8.63 9.38 9.31 14.93 -0.75 0.07 4.00 13.48 -0.94 0.06 4.30	Crown Line Crown Line Crown Line Crown Line Crown Line E.50 8.93 8.82 4.00 -0.43 0.11 1.00 6.00 -0.58 0.09 3.00 -0.58 0.09 12.90 -0.03 1.15 11.40 8.63 9.38 9.31 8.63 9.38 9.72 9.66 8.78 9.72 9.66 6.80 -0.94 0.06 4.30	Crown Line Loss Flow Line Crown Line Loss Flow Line Loss B.82 8.82 4.00 -0.43 0.11 1.00 6.00 -0.58 0.09 3.00 -0.03 1.15 11.40 8.63 9.38 9.31 8.63 9.38 9.31 6.50 -0.75 0.07 4.00 6.80 -0.94 0.06 4.30 11.70 10.34 10.22 10.00	Crown Line Crown Line B.50 8.93 8.82 4.00 -0.43 0.11 1.00 8.50 9.08 8.99 6.00 -0.58 0.09 3.00 -0.58 0.09 3.00 -0.03 1.15 11.40 8.63 9.38 9.31 6.50 -0.75 0.07 4.00 -0.75 0.07 4.00 -0.75 0.07 4.00 -0.75 0.07 4.00 -0.75 0.07 4.00 -0.75 0.07 10.00 -0.94 0.06 4.30 -0.94 0.06 4.30 -0.94 0.06 4.30 -0.94 0.06 4.30 -0.94 0.06 4.30 -0.94 0.06 4.30 -0.94 0.06 4.30 -0.94 0.06 4.30 -0.94 0.06 8.20	Crown L 6.50 8.93 8.82 Flow Lit 8.50 8.93 8.82 4.00 -0.43 0.11 1.00 8.50 9.08 8.99 6.00 -0.58 0.09 3.00 12.80 12.83 11.68 -0.03 1.15 11.40 8.63 9.38 9.31 6.50 -0.75 0.07 4.00 8.78 9.72 9.66 6.80 -0.94 0.06 4.30 11.70 10.34 10.22 11.30 0.12 8.20 11.00 10.87 10.83	Crown Li 8.50 8.50 8.93 8.82 8.82 4.00 -0.43 0.11 1.00 0.058 0.09 12.80 12.80 12.80 12.90 -0.03 1.15 11.40 8.63 9.38 9.31 8.63 9.38 9.31 8.63 9.72 8.60 -0.94 0.06 11.70 10.20 11.36 0.12 11.30 0.13 0.03 8.70 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 13.56 10.20 10.20	Crown Li 8.50 8.93 8.82 8.82 8.80 -0.43 0.11 1.00 0.03 1.280 -0.58 0.09 12.80 12.80 12.80 12.90 -0.03 1.15 11.40 8.63 9.38 9.31 8.63 9.38 9.72 8.66 6.80 -0.94 0.06 4.30 11.70 10.20 11.36 0.12 11.36 0.12 11.36 0.13 0.03 8.70 0.13 0.03 8.70 2.84 0.11 18.49	Crown Lin 8.50 8.50 8.93 8.82 8.82 8.82 8.82 8.93 8.82 8.93 8.99 8.99 6.00 7.280 7.19 6.00 7.29 6.00 8.78 9.38 9.31 8.50 9.08 1.15 1.10 1.29 6.00 7.20 1.15 1.10 1.29 6.00 7.20 1.15 1.10 1.29 6.00 7.20 1.15 1.10 1.29 6.10 7.20 1.36 0.12 1.36 0.12 1.36 0.13 1.02 1.36 0.13 0.13 8.70 1.29 6.80 6.80 6.80 6.80 6.80 1.36 1.16 1.20 1.36 1.16 1.20 1.36 1.17 1.00 1.18 1.00 1.36 1.19 1.10	Crown Lin 8.50 8.50 8.93 8.82 8.82 8.82 8.82 8.82 8.89 8.99 8.90 1.00 0.05 0.09 1.100 0.00 1.15 0.07 1.100 0.03 1.15 1.100 0.04 0.05 0.07 1.00 0.04 0.06 0.09 1.00	Crown Lin 8.50 8.50 8.50 8.82 8.82 8.82 4.00 3.0.43 0.11 1.00 0.03 1.15 11.40 12.80 12.80 12.80 12.80 12.90 0.03 1.15 11.40 12.90 0.03 1.15 11.40 12.90 0.03 1.15 11.40 12.90 0.03 1.15 11.40 12.90 0.03 1.15 11.40 10.20 1.36 0.12 11.70 0.13 0.03 8.70 1.36 0.12 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 1.36 0.13 0.03 8.70 0.13 0.03 8.70 0.13 0.03 8.70 0.13 0.03 8.70 0.13 0.03 8.70 0.13 0.03 8.70 0.13 0.03 0.0	Crown Lin 8.50 8.50 8.82 8.82 8.82 9.83 8.82 8.82 9.85 9.08 8.99 8.99 6.00 -0.58 0.09 12.80 12.80 12.90 -0.75 0.07 11.40 8.69 -0.03 11.15 11.40 12.90 -0.03 11.15 11.40 12.90 -0.03 11.15 11.40 12.90 -0.03 11.15 11.40 10.20 11.36 0.12 11.36 0.13 0.03 8.70 11.36 0.13 0.03 8.70 11.36 0.13 0.03 8.70 11.36 0.13 0.03 8.70 11.36 0.13 0.03 8.70 11.36 0.13 0.03 8.70 11.36 0.13 0.03 8.70 11.36 0.13 0.03 8.70 11.30	Crown Line Crown Line B.50 B.50 Flow Line B.50 B.50 B.50 B.50 B.50 B.50 B.50 B.50
707AL C 0.00 0.00 23.91 23.91 0.00 0.00 18.64 18.64 271 271	707AL C 0.00 0.00 23.91 23.91 0.00 0.00 18.64 18.64 0.00 0.00 2.71 2.71 2.71	23.91 23.91 23.91 0.00 18.64 18.64 0.00 2.71 2.71 0.00 14.93	23.91 23.91 23.91 23.91 0.00 18.64 18.64 18.64 0.00 2.71 2.71 2.71 14.93 14.93	23.91 23.91 23.91 0.00 18.64 18.64 0.00 2.71 2.71 2.71 0.00 14.93 14.93 0.00											
				00.00	0.00										
4 w 0	3.44	3.44										0 0 0 0	3.44 0 0 0.42 0 0.42 0 0.56 0 0.56 0 0.92 0 0.92	3.44 0 0 0.42 0 0 0.42 0 0 0.42 0 0.56 0.56 0.92 0.92 0.71	3.44 0 0.42 0 2.67 0 2.29 (2.29 0 1.82 1.82 0.92 0.92 0.92 0.92 0.92 0.92
15.84 0.63 5.41 3 10.00 0.08 6.50 0	0.63 5.41	0.63 5.41 0.08 6.50 1.13 5.58	0.63 5.41 0.08 6.50 1.13 5.58	0.63 5.41 0.08 6.50 1.13 5.58 1.81 5.89	0.63 5.41 0.08 6.50 1.13 5.58 1.81 5.89	0.63 5.41 . 0.08 6.50 . 1.13 5.89 . 0.89 6.06	0.63 5.41 : 0.08 6.50 1.13 5.58 1.81 5.89 6.06	0.63 5.41 : 0.08 6.50 1.13 5.58 1.81 5.89 6.06 0.96 6.50	0.63 5.41 2 0.08 6.50 0 1.13 5.58 2 1.81 5.89 2 0.89 6.06 6.50	0.63 5.41 2 0.08 6.50 0 1.13 5.58 2 1.81 5.89 2 0.89 6.06 6.50	0.63 5.41 3 0.08 6.50 (1.13 5.58 3 1.81 5.89 3 0.96 6.50 6.06 6.50 6.31 6.21	0.63 5.41 3 0.08 6.50 (1.13 5.58 3 1.81 5.89 3 0.96 6.50 6.06 6.50 6.06 6.50 6.33 6.06 6.33	0.63 5.41 3 0.08 6.50 0 1.81 5.89 1 0.89 6.06 6.50 0 0.71 6.21 0.57 6.33 0.57 6.45	0.63 5.41 3 0.08 6.50 0 1.81 5.89 1 0.89 6.06 6.50 0 0.71 6.21 0.57 6.33 0.57 6.45	0.63 5.41 3 0.08 6.50 0 1.13 5.58 2 1.81 5.89 7 0.89 6.06 7 0.96 6.50 0 0.57 6.33 6.50 0 0.51 6.45 6.45
0.68 0.00 0.15 0.26	0.68 0.00 0.15 0.26 0.00 2.16	0.68 0.00 0.15 0.26 0.26 2.16 2.16	0.68 0.00 0.15 0.26 0.00 2.16 0.52 0.05 1.84	0.68 0.00 0.15 0.26 0.00 0.00 0.00 0.00 0.00 0.00	0.68 0.00 0.15 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.44	0.68 0.00 0.15 0.15 0.00 0.52 0.00 0.00 0.44 0.44 0.44	0.00 0.15 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.08 0.00 0.15 0.26 0.00 0.00 0.00 0.04 0.44 0.44 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.08 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.44 0.44 0.4	0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.08 1 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.08 1 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.08 1 0.00 0.05 1 0.00 0.05 2 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84	0.08 1 0.00 0.26 1 0.00 0.52 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00
1.06	0.16 1.06 0.00 0.33	0.16 0.00 0.33 0.29	0.00 0.29 0.29 0.25 0.25	0.16 0.00 0.33 0.29 0.00 0.15 0.19	0.16 0.00 0.33 0.29 0.00 0.00 0.00	0.19 0.19 0.25 0.00 0.00 0.19 0.19	0.16 0.00 0.33 0.29 0.00 0.19 0.00 0.00 0.00 0.00	0.16 0.00 0.03 0.23 0.00 0.00 0.00 0.02 0.02	0.16 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.0	S-2 0.16 -43.60 1.06 -60.00 0.00 S-3 0.33 33.35 0.00 S-5 0.00 S-6 0.00 S-7 0.00 S-8 0.00 S-9 0.00 S-9 0.00 S-7 0.00 S-7 0.00 S-7 0.35 22.10 0.00 S-7 0.35 22.10 0.00 145.00 0.00 S-9 0.20 145.00 0.00 S-9 0.21 S-1 0.05 0.00 0.00 S-9 0.21 S-9 0.21 0.00 0.00 S-9 0.21 S-9 0.21 S-9 0.21 S-9 0.21 S-9 0.21 S-1 0.05 S-1 0.05 S-1 0.05 S-1 0.05 S-1 0.05 S-1 0.05 S-2 0.05 S-3 0.21 S-4 0.05 S-5	S-2 0.16 -43.60 1.06 -60.00 0.00 S-3 0.33 33.35 0.29 207.00 0.00 S-5 0.25 32.10 0.19 22.10 0.02 22.10 0.02 206.00 0.00 S-6 0.19 22.10 0.02 -90.26 1.46 118.00 0.00 S-7 0.35 22.10 0.00 145.00 0.00 5-9 0.21 22.10 0.00 3-9 0.21 3-9 0.21 3-9 0.20 3-1 0.35 3-1 0.05 3-1 0.00 3-1 0.00 3-1 0.00 3-1 0.00 3-1 0.00 3-2 0.00 3-3 0.00 3-4 0.00 3-5 0.00 3-6 0.00 3-7 0.05 3-8 0.20 3-9 0.20 3-9 0.20 3-9 0.20	\$-2 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00	S-2 0.16 -3.60 1.06 -0.00 0.00 S-3 0.33 33.35 0.00 S-5 0.00 S-6 0.00 S-7 0.00 S-7 0.00 S-8 0.00 S-90.26 0.00 S-90.26 1.46 118.00 0.00 S-7 0.35 22.10 0.00 S-90.21 0.00 S-10 0.00 <td>S-2 0.16 -43.60 1.06 -60.00 0.00 S-3 0.33 33.35 0.00 S-5 0.00 S-5 0.00 S-6 0.19 22.10 0.00 S-7 0.00 S-90.26 1.46 118.00 0.00 S-7 0.35 22.10 0.00 S-7 0.35 22.10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-10 0.07 S-10 0.00 S-10 0.00</td> <td>S-2 0.16 -43.60 1.06 -60.00 0.00 S-3 0.33 33.35 0.29 207.00 0.00 S-5 0.25 32.10 0.19 22.10 0.02 206.00 0.00 S-6 0.19 22.10 0.02 90.26 1.46 118.00 0.00 S-7 0.35 22.10 0.05 22.10 0.00 S-7 0.35 22.10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-11 0.00 S-11 0.00 S-11 0.00 S-11 0.00 S-11 0.00 S-11 0.00</td>	S-2 0.16 -43.60 1.06 -60.00 0.00 S-3 0.33 33.35 0.00 S-5 0.00 S-5 0.00 S-6 0.19 22.10 0.00 S-7 0.00 S-90.26 1.46 118.00 0.00 S-7 0.35 22.10 0.00 S-7 0.35 22.10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-10 0.07 S-10 0.00	S-2 0.16 -43.60 1.06 -60.00 0.00 S-3 0.33 33.35 0.29 207.00 0.00 S-5 0.25 32.10 0.19 22.10 0.02 206.00 0.00 S-6 0.19 22.10 0.02 90.26 1.46 118.00 0.00 S-7 0.35 22.10 0.05 22.10 0.00 S-7 0.35 22.10 0.00 S-10 0.00 S-10 0.00 S-10 0.00 S-11 0.00 S-11 0.00 S-11 0.00 S-11 0.00 S-11 0.00 S-11 0.00
-43.60 1.06 1.06 0.26	-43.60 1.06 1.06 0.26 1 1 60.00 0.00 0.00 S-3 0.33 2.27 2.16	-43.60 1.06 1.06 0.26 1 1 60.00 0.00 0.00 0.00 S-3 0.33 2.27 2.16 00 33.35 0.29 2.07 0.52	0 -43.60 1.06 1.06 0.26 4:1 1 60.00 0.00 0.00 0.00 S-3 0.33 2.27 2.16 0.00 33.35 0.29 2.07 0.52 B 1 207.00 0.00 0.00 0.00 S-5 0.25 1.94 1.84	0 -43.60 1.06 1.06 0.26 4:1 1 60.00 0.00 0.00 0.00 6:00 33.35 0.29 2.07 0.52 B 1 207.00 0.00 0.00 0.00 S-5 0.25 1.94 1.84 6:00 32.10 0.19 0.00 0.00	.00 32.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1 1 60.00 0.00 0.00 0.00 0.00 0.00 0.00	.00 33.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	43.60 1.06 1.06 0.26 5-3 0.33 2.27 2.16 33.35 0.29 2.07 0.52 1 207.00 0.00 0.00 0.00 5-5 0.25 1.94 1.84 32.10 0.19 1.78 0.44 1 298.00 0.00 0.00 0.00 22.10 0.02 1.59 1.61 22.10 0.02 1.59 0.40 1 206.00 0.00 0.00 0.00 2-2.10 0.00 0.00 0.00 3-90.26 1.46 1.46 0.37	1 1 60.00 0.00 0.00 0.00 S-3 0.33 2.27 2.16 0.00 33.35 0.29 2.07 0.52 1 207.00 0.00 0.00 0.00 32.10 0.19 1.78 0.44 .00 32.10 0.00 0.00 0.00 55 22.10 0.02 1.59 0.40 5 22.10 0.00 0.00 0.00 5 22.10 0.02 1.59 0.40 5 22.10 0.00 0.00 0.00 8-90.26 1.46 1.46 0.37 1 118.00 0.00 0.00 0.00 1 22.10 0.05 0.00 0.00 2-90.26 1.46 1.46 0.37 1 12.00 0.00 0.00 0.00 1 145.00 0.00 0.00 0.00 1 1.45.00 0.00 0.00 0.00	1 1 60.00 0.00 0.00 0.00 0.00 0.00 0.00	43.60 1.06 1.06 0.26 1 5-3 0.33 2.27 2.16 00 33.35 0.29 2.07 0.52 1 5-5 0.25 1.94 1.84 00 32.10 0.00 0.00 0.00 1 298.00 0.00 0.00 0.00 5-6 0.19 1.69 1.61 5-7 0.00 0.00 0.00 0.00 5-8 0.29 0.20 0.00 1 298.00 0.00 0.00 0.00 5-9 0.20 0.20 0.19 1 118.00 0.00 0.00 0.00 5-7 0.35 1.57 0.35 1 22.10 0.05 1.57 0.39 5-7 0.35 1.57 0.39 5-9 0.21 0.05 0.00 1 145.00 0.00 0.00 5-1 145.00 0.00 0.00 5-1 145.00 0.00 0.00 5-2 0.01 0.00 0.00 5-3 0.21 0.00 0.00 5-4 0.05 0.00 5-7 0.35 1.57 0.39 5-7 0.35 1.57 0.39 5-7 0.35 0.00 5-7 0.00 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00 5-7 0.00	1 1 60.00 0.00 0.00 0.00 0.00 0.00 0.00	43.60 1.06 1.06 0.26 1 5-3 0.33 2.27 2.16 33.35 0.29 2.07 0.52 207.00 0.00 0.00 0.00 3-5 0.25 1.94 1.84 32.10 0.00 0.00 0.00 296.00 0.00 0.00 0.00 206.00 0.00 0.00 0.00 2-10 0.00 0.00 0.00 2-20 0.00 0.00 0.00 2-30 0.20 0.20 0.19 2-30 0.20 0.20 0.00 2-30 0.20 0.20 0.00 2-30 0.21 0.25 0.14 2-30 0.20 0.00 0.00 2-30 0.21 0.35 0.21 2-30 0.20 0.00 0.00 2-30 0.20 0.00 0.00 2-30 0.00 0.00 0.00<	0.00	1 1 60.00 1.06 1.06 0.26 1 2-3 0.33 2.27 2.16 1 3.35 0.29 2.07 0.52 1 1
00.0	0.33 2.27 2.16	0.33 2.27 2.16 0.29 2.07 0.52 14.70 1.13 5.58	0.33 2.27 2.16 0.29 2.07 0.52 14.70 1.13 5.58 0.00 0.00 0.00 0.25 1.94 1.84	0.33 2.27 2.16 0.29 2.07 0.52 14.70 1.13 5.58 0.00 0.00 0.00 0.25 1.94 1.84 0.19 1.78 0.44 12.89 1.81 5.89	0.33 2.27 2.16 0.29 2.07 0.52 14.70 1.13 5.58 0.00 0.00 0.00 0.25 1.94 1.84 0.19 1.78 0.44 12.89 1.81 5.89 0.00 0.00 0.00	0.33 2.27 2.16 0.29 2.07 0.52 14.70 1.13 5.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.33 2.27 2.16 0.29 2.07 0.52 14.70 1.13 5.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.33 2.27 2.16 0.29 2.07 0.52 14.70 1.13 5.58 2. 0.00 0.00 0.00 0.00 1.84 1.84 1.81 5.89 2. 0.19 1.78 0.44 12.89 1.81 5.89 2. 0.00 0.00 0.00 1.61 0.89 6.06 2. 0.02 1.59 0.40 12.01 0.89 6.06 2. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.20 0.19 1.00 0.96 6.50 0 1.46 1.46 0.37 10.00 0.96 6.50 0	S-3 0.33 2.27 2.16 4.70 1.13 5.58 2.02 33.35 0.29 2.07 0.52 14.70 1.13 5.58 2.02 207.00 0.	S-3 0.33 2.27 2.16 33.35 0.29 2.07 0.52 14.70 1.13 5.58 2.20 207.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.10 0.19 1.78 0.44 12.89 1.81 5.89 2.20 298.00 0.00 0.00 0.00 0.00 0.00 0.00 206.00 0.00 0.00 0.00 0.00 0.00 0.00 206.00 0.00 0.00 0.00 0.00 0.00 0.00 3-0 0.00 0.00 0.00 0.00 0.00 0.00 445.00 0.00 0.00 0.00 0.00 0.00 5-10 0.00 0.00 0.00 0.00 0.00 5-2 0.21 0.20 0.20 0.142 0.21 0.21 0.21 0.21 0.20 0.00 5-3 0.21 0.29 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td< td=""><td>S-3 0.33 2.27 2.16 1.13 5.58 2.59 2.50 2.50</td><td>S-3 0.33 2.27 2.16 1.13 5.58 2.8 33.35 0.29 2.07 0.52 14.70 1.13 5.58 2.8 207.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 298.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 298.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 206.00 0.00<td>S-3 0.33 2.27 2.16 4.70 1.13 5.58 2.84 4.84 1.84</td><td>S-3 0.33 2.27 2.16 4.70 1.13 5.58 2.59 2.59</td><td>S-3 0.33 2.27 2.16 1.13 5.58 2 33.35 0.29 2.07 0.52 14.70 1.13 5.58 2 S-5 0.29 2.07 0.52 14.70 1.13 5.58 2 32.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.10 0.19 1.78 0.44 12.89 1.81 5.89 7 5-6 0.19 1.78 0.44 12.89 1.81 5.89 7 2-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3-6 0.19 1.69 1.61 1.20 0.89 6.06 0.00 3-90.26 0.30 0.00 0.00 0.00 0.00 0.00 0.00 3-7 0.35 1.50 1.42 1.30 0.71 6.21 5-10 0.00 0.00 0.00 0.00 0.00</td></td></td<>	S-3 0.33 2.27 2.16 1.13 5.58 2.59 2.50 2.50	S-3 0.33 2.27 2.16 1.13 5.58 2.8 33.35 0.29 2.07 0.52 14.70 1.13 5.58 2.8 207.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 298.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 298.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 206.00 0.00 <td>S-3 0.33 2.27 2.16 4.70 1.13 5.58 2.84 4.84 1.84</td> <td>S-3 0.33 2.27 2.16 4.70 1.13 5.58 2.59 2.59</td> <td>S-3 0.33 2.27 2.16 1.13 5.58 2 33.35 0.29 2.07 0.52 14.70 1.13 5.58 2 S-5 0.29 2.07 0.52 14.70 1.13 5.58 2 32.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.10 0.19 1.78 0.44 12.89 1.81 5.89 7 5-6 0.19 1.78 0.44 12.89 1.81 5.89 7 2-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3-6 0.19 1.69 1.61 1.20 0.89 6.06 0.00 3-90.26 0.30 0.00 0.00 0.00 0.00 0.00 0.00 3-7 0.35 1.50 1.42 1.30 0.71 6.21 5-10 0.00 0.00 0.00 0.00 0.00</td>	S-3 0.33 2.27 2.16 4.70 1.13 5.58 2.84 4.84 1.84	S-3 0.33 2.27 2.16 4.70 1.13 5.58 2.59 2.59	S-3 0.33 2.27 2.16 1.13 5.58 2 33.35 0.29 2.07 0.52 14.70 1.13 5.58 2 S-5 0.29 2.07 0.52 14.70 1.13 5.58 2 32.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.10 0.19 1.78 0.44 12.89 1.81 5.89 7 5-6 0.19 1.78 0.44 12.89 1.81 5.89 7 2-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3-6 0.19 1.69 1.61 1.20 0.89 6.06 0.00 3-90.26 0.30 0.00 0.00 0.00 0.00 0.00 0.00 3-7 0.35 1.50 1.42 1.30 0.71 6.21 5-10 0.00 0.00 0.00 0.00 0.00
33.35 0.29 2.07 0.52 14.70 1.13 5.39 5.5 0.29 2.07 0.50 0.00 3.210 0.19 1.78 0.44 12.89 1.81 5.89 1 298.00 0.00 0.00 0.00 22.10 0.02 1.59 0.40 12.01 0.89 6.06 1 206.00 0.00 0.00 0.00 5.9 0.20 0.20 0.19 -90.25 1.46 1.46 0.37 10.00 0.96 6.50 1 118.00 0.00 0.00 0.00	S-5 0.25 1.94 1.84 1.84 1.81 5.89 2.89	32.10 0.19 1.78 0.44 12.89 1.81 5.89 2. \$-6 0.19 1.69 1.61	S-6 0.19 1.69 1.61 0.00 1.69 6.06 2.00 1 206.00 0.00	55 22.10 0.02 1.59 0.40 12.01 0.89 6.06 2.00 1 206.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1 206.00 0.00 0.00 0.00 8.00 8.00 8.20 0.20 0	-90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.56 1.18.00 0.00 0.00 0.00 0.00	1 113.00 0.00 0.00 0.00		3 1 145.00 0.00 0.00 0.00	\$ 1 145.00 0.00 0.00 0.00 0.00 S-9 0.21 0.95 0.90	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	1 145.00 0.00 0.00 0.00 5.9 0.21 0.95 0.90 0.00 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 1 304.00 0.00 0.00 0.00 0.00 0.00 5.40 0.77 0.74 0.70 0.00	1 145.00 0.00 0.00 0.00 0.00 S-9 0.21 0.95 0.90 10.73 0.57 6.33 0.92 1 304.00 0.00 0.00 0.00 0.00 0.00 25-10 0.07 0.74 0.70 10.22 0.61 6.45 0.71 26 22.10 0.02 0.02 0.00 10.22 0.61 6.45 0.71	1 145.00 0.00 0.00 0.00 5.9 0.21 0.95 0.90 0.00 0.00 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 1 304.00 0.00 0.00 0.00 10.22 0.00 0.00 26 22.10 0.00 0.00 0.00 0.00 0.00 0.00 1 273.00 0.00 0.00 0.00 0.00 0.00	1 45.00
33.35 0.29 2.07 0.52 14.70 1.13 3.39 2.07 0.50 0.00 0.00 0.00 0.00 0.00 1.84 1.84 1.89 0.49 1.81 5.89 7.10 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0	S-5 0.25 1.94 1.84 1.84 1.81 5.89 2. 1 298.00 0.00 </td <td>32.10 0.19 1.78 0.44 12.89 1.81 5.89 2. 5-6 0.19 1.69 0.00 5 22.10 0.02 1.59 0.40 12.01 0.89 6.06 2. 1 206.00 0.00 0.00 0.00 5-9 0.20 0.20 0.19 -90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.00 5-7 0.35 1.50 1.42 5-7 0.35 1.50 1.42</td> <td>55 25.10 0.02 1.69 1.61 0.89 6.06 2.00 1 206.00 0.00 0.00 0.00 0.00 0.00 0.00 1 206.00 0.00 0.00 0.00 0.00 0.00 0.00 1 113.00 0.00 0.00 0.00 0.00 0.00 0.00 2 3.7 0.35 1.50 1.42 1.82 2 1.50 1.57 1.30 0.71 6.21 1.82</td> <td>55 22.10 0.02 1.59 0.40 12.01 0.89 6.06 2.00 1 206.00 0.00 0.00 0.00 0.00 0.00 0.00 -90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.56 1 118.00 0.00 0.00 0.00 0.00 1.50 1.42 27.10 0.05 150 1.57 0.39 11.30 0.71 6.21 1.82</td> <td>1 206.00 0.00 0.00 0.00 S-9 0.20 0.20 0.19 -90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.56 1 118.00 0.00 0.00 0.00 0.00 0.00 0.00 2-7 0.35 1.50 1.42 2-7 0.05 1.57 0.39 11.30 0.71 6.21 1.82</td> <td>-90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.56 1.18.00 0.00 0.00 0.00 0.00 0.00 0.00 0</td> <td>S-7 0.35 1.50 1.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0</td> <td>0.35 1.50 1.42</td> <td></td> <td>0.21 0.95 0.90</td> <td>S-9 0.21 0.95 0.90 0.04 0.06 0.01 10.73 0.57 6.33 0.92</td> <td>S-9 0.21 0.95 0.90 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 1 304.00 0.00 0.00 0.00 0.00 0.00 5 40 0.77 0.74 0.70 0.00</td> <td>S-9 0.21 0.95 0.90 10.73 0.57 6.33 0.92 0.00 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 0.00 1 304.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 26 22.10 0.02 0.02 0.00 10.22 0.51 6.45 0.71 0.00</td> <td>S-9 0.21 0.95 0.90 10.73 0.57 6.33 0.92 0.00 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 0.00 25.10 0.07 0.74 0.70 0.70 0.00 0.</td> <td>S-9 0.21 0.95 0.90 0.00</td>	32.10 0.19 1.78 0.44 12.89 1.81 5.89 2. 5-6 0.19 1.69 0.00 5 22.10 0.02 1.59 0.40 12.01 0.89 6.06 2. 1 206.00 0.00 0.00 0.00 5-9 0.20 0.20 0.19 -90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.00 5-7 0.35 1.50 1.42 5-7 0.35 1.50 1.42	55 25.10 0.02 1.69 1.61 0.89 6.06 2.00 1 206.00 0.00 0.00 0.00 0.00 0.00 0.00 1 206.00 0.00 0.00 0.00 0.00 0.00 0.00 1 113.00 0.00 0.00 0.00 0.00 0.00 0.00 2 3.7 0.35 1.50 1.42 1.82 2 1.50 1.57 1.30 0.71 6.21 1.82	55 22.10 0.02 1.59 0.40 12.01 0.89 6.06 2.00 1 206.00 0.00 0.00 0.00 0.00 0.00 0.00 -90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.56 1 118.00 0.00 0.00 0.00 0.00 1.50 1.42 27.10 0.05 150 1.57 0.39 11.30 0.71 6.21 1.82	1 206.00 0.00 0.00 0.00 S-9 0.20 0.20 0.19 -90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.56 1 118.00 0.00 0.00 0.00 0.00 0.00 0.00 2-7 0.35 1.50 1.42 2-7 0.05 1.57 0.39 11.30 0.71 6.21 1.82	-90.26 1.46 1.46 0.37 10.00 0.96 6.50 0.56 1.18.00 0.00 0.00 0.00 0.00 0.00 0.00 0	S-7 0.35 1.50 1.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.35 1.50 1.42		0.21 0.95 0.90	S-9 0.21 0.95 0.90 0.04 0.06 0.01 10.73 0.57 6.33 0.92	S-9 0.21 0.95 0.90 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 1 304.00 0.00 0.00 0.00 0.00 0.00 5 40 0.77 0.74 0.70 0.00	S-9 0.21 0.95 0.90 10.73 0.57 6.33 0.92 0.00 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 0.00 1 304.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 26 22.10 0.02 0.02 0.00 10.22 0.51 6.45 0.71 0.00	S-9 0.21 0.95 0.90 10.73 0.57 6.33 0.92 0.00 22.10 0.04 0.06 0.01 10.73 0.57 6.33 0.92 0.00 25.10 0.07 0.74 0.70 0.70 0.00 0.	S-9 0.21 0.95 0.90 0.00

SR 46 PD&E
MODIFIED BASIN 1 POST-DEVELOPMENT CONDITIONS
MODIFIED POND 1
NODE TIME SERIES REPORT
10 YEAR / 24 HOUR TAILWATER CALCULATION

imulation	Node	Group	Time	Stage	Warning	Surface		Total		Total	
			hrs	£t	Stage ft	Area ft2	Inflow	Outflow	Vol In af	Vol Out af	
10YR24HR	POND 1	BASE	11.02	8.36		89872.29	6.17	4.81	1.39	1.03	TOTAL THE THE PROPERTY OF THE
10YR24HR	POND 1	BASE	11.10	9.36	00	89893.17	6.31	5.01	1.44	1.06	
10YR24HR	POND 1	BASE	11.18	8.37		89913.53	6.48	5.19	1.48	1.10	
10YR24HR	POND 1	BASE	11.27	8.37	00.	89933.61	6.67	5.38	1.53	1,13	
10YR24HR	POND 1	BASE	11,35	8.38	00.	89956.28	7.31	5.60	1.57	1.17	
10YR24HR	POND 1	BASE	11.43	8.38	00.	89991.35	8.72	5.94	1.63	1.21	
10YR24HR	POND 1	BASE	11.52	8.39	00.	90043.37	10.31	6.46	1.69	1.25	
10YR24HR	POND 1	BASE	11.60	8.41	00	90122.65	13.94	7.28	1.78	1.30	
10YR24HR	POND 1	BASE	11.67	8.44	00	90253.48	20.60	8.73	1.89	1.35	
10YR24HR	POND 1	BASE	11.75	8.48	00.	90458.79	27.50	11.22	2.04	1.42	
10YR24HR	POND 1	BASE	11.84	8.55	00.	90750.69	35.27	15.19	2.26	1.51	
10YR24HR	POND 1	BASE	11.92	8.62	00.	91087.35	45.06	20.41	2.53	1.63	
10YR24HR	POND 1	BASE	12.00	8.70	0.0	91491.25	54.59	27.56	2.87	1.79	
10YR24HR	POND 1	BASE	12.08	8.79	00	91888.30	59.05	35.52	3.26	2.01	
10YR24HR	POND 1	BASE	12.17	8.85	00.	92175.81	55.43	41.88	3.65	2.27	
10YR24HR	POND 1	BASE	12.25	8.88	00.	92308.25	49.42	44.98	4.01	2.57	
10YR24HR	POND 1	BASE	12.34	80 80	00.	92328.94	44.03	45.47	4.34	2.89	0092 xx 88 x 1
10YR24HR	POND 1	BASE	12.42	8.87	00.	92269.30	37.93	44.05	4.62	3.20	[CAO] S
10YR24HR	POND 1	BASE	12.51	8.84	00.	92135.77	31.81	40.96	4.89	3.52	
10YR24HR	POND 1	BASE	12.59	8.81	00.	92000.95	27.74	37.95	5.07	3.76	(a) New (a) (a)
10YR24HR	POND 1	BASE	12.67	8.78	00.	91833.45	23.49	34.37	5.25	4.02)
10YR24HR	POND 1	BASE	12.76	8.74	00.	91659.37	19.87	30.81	5.41	4.25	
10YR24HR	POND 1	BASE	12.84	8.70	00.	91488.22	16.94	27.50	5.54	4.45	
10YR24HR	POND 1	BASE	12.93	8.67	10.00	91324.27	14.46	24.48	5.65	4.64	120% JOSE 1865 CO
10YR24HR	POND 1	BASE	13.00	8.64	10.00	91188.73	12.70	22.11	5.73	4.78	e f
10YR24HR	POND 1	BASE	13.09	8.61	10.00	91044.66	11.03	19.71	5.81	4.93	いつりてなる。
10YR24HR	POND 1	BASE	13.17	8.58	10.00	90911.24	9.56	17.60	5.89	5.06	,
10YR24HR	POND 1	BASE	13.26	8.55	10.00	90788.25	8.41	15.74	5.95	5.18	
10YR24HR	POND 1	BASE	13.34	8.53	10.00	90677.34	7.64	14.15	6.01	5.28	
10YR24HR	POND 1	BASE	13.42	8.51	10.00	90591.55	7.21	12.96	6.05	5.37	
10YR24HR	POND 1	BASE	13.50	8.49	10.00	90505.77	6.85	11.82	6.10	5.45	

SHANDA DSA

STORM SEWER HYDRAULICS

System: Basin-1

Storm Sewer Control Elevatio Outfall Tallwater Elevation: Exit Loss at Outfall:

Organization: Wilbur Smith Associates, Inc. Designed by: PQS Checked by:

Description: Lake Jessup SR-46

Seminole

County:

Lake Jessup

PROJECT

9/18/2009

Area 1 Area 2 Area 3 0.95 0.25 0.00 Runoff Coefficients CONDITIONS 는 무료 Storm Event Zone 8.70 0.25 8.95

0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 Velocity Capacity Mann'g
Actual 0.0120 18,86 14.10 31.49 17.51 53.22 102.70 16.92 37,17 9.75 5,74 (cfs) Physical 12.70 10.02 3.25 14.53 21.03 2.33 3.92 2.95 9.26 9.91 9,12 3.18 4.45 (fps) 4.00 7.53 3.1 3.56 3.45 2.87 Partial Partial Partial Flow Type ans 글 ᆵ 100 ans sub 를 글 글 0.5425 0.1449 0.1236 0.3259 1,6505 0.1306 0.2542 2.3953 0.0925 2.0202 0.1550 0.1379 2.0851 4.1837 0.1007 0.2428 2.3684 10,666 0.1531 된 8 8 ü Pipe Height Width 2 8 \$ 0 8 8 5 5 <u>E</u> 89 88 38 38 88 38 36 0.154 0.352 6.339 7.200 6.539 0.300 0.368 3.400 0.300 0.200 2,510 6.400 0.300 0.085 0.300 0.092 2.000 0.321 0.671 Fall € 12.20 12.20 10.70 11.09 19.40 19.40 Inlet Elevations Pipe Elevations 10.26 11.58 6.20 4.80 8.20 3.70 8.₁. 6.80 9.90 8.40 9.78 9.18 6.50 5.00 9.39 9.81 6,50 4.00 Crown Line Flow Line 5 17.90 26.90 19.40 10.20 10.20 18,54 25.94 11.44 11.69 12.90 11.40 9.72 6.50 4.00 10.18 6.80 4.30 10.93 8.20 11.74 8,70 9.98 B.40 9.03 1.00 6.00 9.27 26.59 Jnc Loss 11.58 11.78 10.26 11.09 19.21 0.14 12.95 1.25 0,10 0.08 0.15 0.04 0.67 E E 9.18 0.15 9.39 0.12 9.81 13.56 20.83 11.70 11,00 28.31 12.80 -0.78 1.98 1.62 8.50 -0.15 8.63 8.78 -1.48 inlet 8.50 -0.68 -0.89 0.61 Clear. TOTAL (Qb) Sum(Qb) 12.93 12.93 17.49 17.49 15.62 0.00 13.99 **13.99** 0.00 21.97 0.00 4.11 6.64 0.00 28.28 0.00 3.09 3.09 0.00 0.00 0.0 4.11 5.21 0.00 0.00 (cts) Flow (0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.92 2.00 0.56 1.82 2.29 Total CA 4.49 3 44 0.42 2.67 0.71 (ac) 7.12 7.36 (in/hr) 6.83 7.41 Travet Inten. 6.54 6.98 7.24 6.29 6.38 7.41 0.50 0.77 0.85 0.55 0.97 1.56 0.62 (Hin) 0.00 0.53 0.08 14.20 12.64 11.87 10.00 11.25 10.71 10.21 15.70 10.00 15,17 (min) С 0.39 0.00 0.00 0.44 0.40 0.26 0.37 0.00 0.68 000 2.16 0.52 0.00 0.00 3,33 1.16 0.00 1.84 1.6 1.42 0.90 0.01 Total S Drainage Areas 1.46 1.50 1.57 0.06 0.02 1.78 0.00 1.69 1.59 0.20 Total 1.06 2.07 0.95 Sub 4.63 2.72 2.27 94 0.00 2.91 3.51 0.05 0.02 0.04 0.85 0.64 0.65 0.00 0.16 1.06 0.00 0.29 0.19 0.00 0.19 0.02 0.00 0.20 1.46 0.00 0.35 0.21 0.07 0.00 0.33 0.25 <u>ප</u> 22.10 304.00 22.10 လ 118.00 22.10 145.00 S-9 S-10 22.10 Ş.5 32.10 298.00 9-S -90.26 33.35 43.60 က် 206.00 2 Offset S-2 35.00 S-7 Bris Len 23+50.00 DBI-B 20+50.00 25+54,55 MES4:1 Station 30+00 GUT-S GUT-S 27+00 GUT-S FROM DBI-B 27+00 08I-B 19+00 OBI-B 18+40 DB1-B S-10 18+40 Type S-5 လှ တ္ တ် 3 S-3

0.0120

17.56

10.67

8.44 9.94

Partia

1.4574

留留

1.530

7.500

17.90 26.90

25.40

0.65

1,72

5.21

0.00

0.64

7.41

0.21

10.00

0.00

0,00

0.00

S-11 22.10 105.00

33+70.00 GUT-S

0.67

0.67

273.00

32+69.26

GUT-S

0.00

28.98

30.85

2.7473

qns

2.3810

9

2.500

26.90

29.40 27.90

0.55

1.87

WATERSHED	CHARACTERISTICS	go то s	TORMWA	TER TREA	TEMENT A	NALYSIS	Blue Numbers = Red Numbers =	Input data Calculated or Carryover
		CLICK ON CE	LL BELOV	V TO SELEC	T CONFIGU	RATION		
SELECT CATC	HMENT CONFIGURATION		A-9	Single Catc	hment		VIEW CATCHMEN	IT CONFIGURATION
CATCHMENT NO.1 CHARAC			mixed lan	d uses (sid	e calculatio	n)	OVERWRITE DEFAULT (CONCENTRATIONS USING:
	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	noπ DCIA CN	%DC/A	PRE:	POST:
Pre-development land use: with default EMCs	Undeveloped / Rangeland / Forest: TN=1 CLICK ON CELL BELOW TO SEL		1				EMC(N): mg/L EMC(P): mg/L	mg/L mg/L
Post-development land use:	Highway: TN=1,640 TP=0.220						EMC(I). SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	ing/E
with default EMCs			Total				CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchm		13.84					USE DEFAULT O	ONCENTRATIONS
Total post-development catchr		14.82						
Pre-development Non DCIA C Pre-development DCIA percen		87.76 0.00			Dro dovolo	omant Annua	Mass Loading - Nitrogen:	16.788 kg/year
Post-development Non DCIA (88.27	70				Mass Loading - Phosphorus:	0.803 kg/year
Post-development DCIA perce	intage:	50.40	%				al Mass Loading - Nitrogen:	51.043 kg/year
Estimated Area of BMP (used	for rainfall excess not loadings)	3.04					al Mass Loading - Phosphorus:	
CATCHMENT NO.2 CHARAC	TERISTICS:	\ If	mixed lan	d uses (sid	e calculatio	ın)	OVERWRITE DEFAUI	LT CONCENTRATIONS:
į	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRÉ:	POST:
Pre-development land use:							EMC(N): mg/L	mg/L
	CLICK ON CELL BELOW TO SEL	ECT	<u> </u>				EMC(P): mg/L	mg/L
Post-development land use:			Total				CLICK ON CELL B	BELOW TO SELECT:
Total pre-development catchm	ent area:		AC TOTAL	<u> </u>	l			
Total post-development catchr			AC				USE DEFAULT	CONCENTRATIONS
Pre-development Non DCIA C								
Pre-development DCIA percer			%				Mass Loading - Nitrogen:	kg/year
Post-development Non DCIA							Mass Loading - Phosphorus:	kg/year
Post-development DCIA perce	ntage: for rainfall excess not loadings)		% AC				al Mass Loading - Nitrogen: al Mass Loading - Phosphorus:	kg/year kg/year
CATCHMENT NO.3 CHARAC		\		d uses (sid	ie calculatio			LT CONCENTRATIONS:
OATOTIME IT NO IS OFFAIR	CLICK ON CELL BELOW TO SEL		Landuse		non DCIA CN		PRE:	POST:
Pre-development land use:	GEIGN GREEF BELOW TO GE	201	1	Alou Acius	non pony on	MOGIA	EMC(N): mg/L	mg/L
. To dovelopment land doe.	CLICK ON CELL BELOW TO SEL	ECT					EMC(P): mg/L	mg/L
Post-development land use:								
		rance was	Total		L		CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchm Total post-development catchr			AC AC				USE DEFAULT O	ONGENTRATIONS
Pre-development Non DCIA C			AC.					
Pre-development DCIA percer			1%		Pre-develor	oment Annual	Mass Loading - Nitrogen:	kg/year
Post-development Non DCIA (Mass Loading - Phosphorus:	kg/year
Post-development DCIA perce			%				al Mass Loading - Nitrogen:	kg/year
Estimated Area of BMP (used	for rainfall excess not loadings)		AC		Post-develo	opment Annua	Mass Loading - Phosphorus:	kg/year
CATCHMENT NO.4 CHARAC	TERISTICS:	\	mixed lar	nd uses (sid	le calculatio	on)	OVERWRITE DEFAUI	LT CONCENTRATIONS:
	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:
Pre-development land use:							EMC(N): mg/L	mg/L
	CLICK ON CELL BELOW TO SEL	ECT					EMC(P): mg/L	mg/L
Post-development land use:			1 Total				CHCKONCELLE	BELOW TO SELECT:
Total pre-development catchm	ent area:		AC TOTAL	L	L			ONCENTRATIONS
Total post-development catchr	nent or BMP analysis area:		AC				USE DEFAULT C	CRUEIARITATIONS
Pre-development Non DCIA C							N4) NI4	
Pre-development DCIA percen Post-development Non DCIA (%				Mass Loading - Nitrogen: Mass Loading - Phosphorus:	kg/year kg/year
Post-development DCIA perce			%				Mass Loading - Prospriorus.	kg/year
	for rainfall excess not loadings)		AC				Mass Loading - Phosphorus:	

		2 Catchment 3 Catchment 4 10 0.000 0.000 ac 10 0.000 0.000 ac 10 0.	0.00 0.00 ft 0.000 0.000 ac-ft	NOTE FOR TRE/ EFFICIENCY G EFFICIENCY G The purpose of the treat graphs is to help illustra efficiency of the wet de as the function of aw residence time (and povolume). The graph illus is a point of diminishes is a point of diminishes permanent pool volume increased. Therefore, most economical BN system, other alterna system, other alterna "treatment trains" and treatment should be
TION:		Catchment 1 Catchment 2 13.840 0.000 11.780 0.000 81.00	11.22 0.00 5.601 0.000	ciency Cun tem Efficie 11 tem Efficie 12 tem Efficie 13 tem Efficie 12 tem Efficie 13 tem Efficie 13
WET DETENTION:	WET DETENTION POND SERVING:	Total pre-development catchment area: Total post-development catchment area: Average annual residence time (between 1 and 500 days): Littoral Zone used in the design: Littoral Zone efficiency credit (user specifies 10, 15, or 20%): Total Nitrogen removal required: Total Nitrogen removal efficiency provided: Total Phosphorous removal efficiency provided: Is the wet detention sufficient:	Permanent Pool Depth: Minimum Permanent Pool Volume:	100 300 400 Average Annual Residence Time (days):

Blue Numbers = Input data Red Numbers = Calculated or Carryover
GO TO STORMWATER TREATMENT ANALYSIS
REQUIRED REMAINING TREATMENT EFFICIENCIES OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION. USE FOR SIZING OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION.
Remaining treatment efficiency needed (Nitrogen): Remaining treatment efficiency needed (Phosphorus): Catchment 2 Catchment 3 Catchment 4 43.773 67.753 8%
TYPICAL X-SECTION OF A WET DETENTION SYSTEM TREEBOARD BETWEEN ECONING WERE CREST WITH A 61 (H TO V) OR FLATTER SIDE SLOPE COUTFALL WATER LEVEL OUTFALL WATER LEVEL CONTROL WITH A 41 (H TO V) OR FLATTER SIDE SLOPE CONTROL TABLE TYPICAL X-SECTION OF A WET DETENTION SYSTEM TO PERMANENT THE SHORT MINUS SIX (6) TABLE TYPICAL X-SECTION OF A WET DETENTION SYSTEM TO PERMANENT THE SHORT MINUS SIX (6) TABLE TYPICAL X-SECTION OF A WET DETENTION SYSTEM
Source of Graphic: draft STORMWATER QUALITY APPLICANT'S HANDBOOK dated March 2010, by the Department of Environmental Protection, available at: http://www.dep.state.fl.us/water/wetlands/erp/rules/stormwater, March 2010

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:				DATE
BASIN DESIGNATION:	Basin 2 - Suburban Best Fit	MADE BY:	DTL	11/12/13
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DX.P	12/19/13

BASIN RUNOFF CURVE NUMBER WORKSHEET

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin 2 - Suburban Best Fit					
Open Space - Fair Conditions	Basinger (10%)	B/D	69 .	0.43	29.67
Open Space - Fair Conditions	Myakka (10%)	B/D	69、	0.43	29.67
Open Space - Fair Conditions	Nittaw (20%)	D	84 、	0.86	72.24
Open Space - Fair Conditions	St. Johns (60%)	B/D	69 ·	2.60	179.40
Impervious (Paved parking, roads, etc.)			98 .	11,23	1100.54
Pond NWL area			100 ·	4.08	408.00
Pond pervious area	St. Johns	B/D	69 ·	1.83	126.27
			TOTALS	21.46	1945.79

COMPOSITE CN	90.67
--------------	-------

ESTIMATE OF RUNOFF VOLUME

IN DEMENDACING COMPANY CONTRACTOR		0 (1000.10	NT 10		<i>(:</i> 1)									
1) DETERMINE SOIL STORAGE - S	>	S = (1000 / C	N)-10		(inches)									
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*5)	S)^2 / (P + 0.8	*S)	(inches)									
P = rainfall in inches														
3) DETERMINE RUNOFF VOLUME - $V(R)$														
3) DETERMINE RUNOFF VOLUME	- V(R)>	V(R) = (R/1)	2)*BASIN AR	EA	(acres-feet)									
,	- V(R)	V(R) = (R/1)	2)*BASIN AR	EA	(acres-feet)									
3) DETERMINE RUNOFF VOLUME CALCULATION TABLE Agency	Design Storm Frequency	V(R) = (R / 1	2)*BASIN AR	EA R	(acres-feet)									
CALCULATION TABLE				,	, ,									
CALCULATION TABLE Agency		P	S	R	V(R)									
CALCULATION TABLE	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)									

worksheet: POST CN

 URS
 DTL
 DATE: 11/12/13
 JOB NO.

 MADE BY:
 DEF
 DATE: 12/19/13
 SHEET NO.

 CHECKED BY:
 DATE: 12/19/13
 SHEET NO.

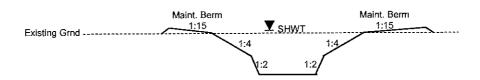
 CALCULATIONS FOR:
 Basin 2
 POND: MOD Pond 2
 BASIN:
 Basin 2 - Suburban Best Fit

Water Quality

Total Basin Area = 21.46 ac `
Paved Area = 11.23 ac `
Pond Area at NWL = 4.08 ac `

A. 1.0 "Over Total Basin Area = 1.79 Ac-Ft
B. 2.5 "Over Paved Area = 2.34 Ac-Ft

Required Treatment (PAV) = 2.34 Ac-Ft SJRWMD Open Basin


Stage Storage Calculations

ELEV. (ft) (NGVD)	Description	AREA (ac)	AVG AREA (ae)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
11.00	Out Berm	5.43				21.89
			5.07	1.00	5.07	4.00
10.00	Inside Berm	4,70				16.82
			4.61	1.00	4.61	12.22
9.00		4.51	4.40		4.42	12.22
8.00		4,32	4.42	1.00	4.42	7.80
8.00		4.52	4.23	1.00	4.23	7.60
7.27	PAV	4.19	4.25	****	4.23	3.57
/		1 1	4.13	0.57	2.34	
7.00		4.14			<u> </u>	1.23
	•		4.11	0.30	1.23	
6.70	NWL	4.08				
4.70		3.72				
-1.00	Bottom	3.22				

Bleed Down Volume

1/2 the req'd PAV = 0.5 * 2.34 =

Volume remaining in pond after recovery of 1/2 PAV = 2.40 Ac-Ft

1.17 Ac-Ft

URS

MADE BY: CHECKED BY:

DTL DEF DATE: DATE: 11/12/13 JOB NO.

12/19/13 SHEET NO.

CALCULATIONS FOR:

SR 46 PD&E

BASIN:

Basin 2 - Suburban Best Fit

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	11.23 -	0.95	10.67
Roadway Pervious Area	4.32	0.20	0.86
Pond Pervious Area	1.83	0.20	0.37
Pond Area at NWL	4.08 \	1.00	4.08
Total	21.46 ·		15.98

Composite C =

0.74

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

3.78 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provid = 1.5 x Min Perm Pool Vol. =

5.67 ac-ft

Stage Storage Calc.

EL	.EV.	AREA	AVG	Delta	Delta	Sum
			AREA	D	storage	Storage
(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
11.00	Out. Berm	5.43				
10.00	In. Berm	4.70				
9.00		4.51				
7.27 、	(PAV)	4.19				
6.70 \	(NWL)	4.08 \				27.58
4.70		3.72	3.90	2.00	7.80	19.78
4.70		3.72	3.47	5.70	19.78	10.70
-1.00 ·	Bottom	3.22 \	1			

Permanent Pool Volume Provided =

27.58 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P :

102.2 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See 40C-42.026)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.76 ft

```
Name: Basin 2
                                           Node: Pond 2
                                                                           Status: Onsite
                                          Type: SCS Unit Hydrograph CN
        Group: BASE
        Unit Hydrograph: Uh323
Rainfall File:
                                                     Peaking Factor: 323.0
                                              Storm Duration(hrs): 0.00
                                            Time of Conc(min): 15.00
Time Shift(hrs): 0.00
    Rainfall Amount(in): 0.000
               Area(ac): 21.46 '
            Curve Number: 90.67
                                               Max Allowable Q(cfs): 999999.00
                 DCIA(%): 0.00
         Name: Offsite 205
                                      Node: 205
Type: SCS Unit Hydrograph CN
                                                                           Status: Onsite
        Group: BASE
    Unit Hydrograph: Uh323 Peaking Factor: 323.0
Rainfall File: Storm Duration(hrs): 0.00
Rainfall Amount(in): 0.000 Time of Conc(min): 61.80
Area(ac): 8.57 Time Shift(hrs): 0.00
Curve Number: 85.00 Max Allowable Q(cfs): 999999.00
                                                    Peaking Factor: 323.0
                DCIA(%): 0.00
         Name: Offsite 207 Node: 207
Group: BASE Type: SCS Unit Hydrograph CN
                                                                           Status: Onsite
        Group: BASE
                                                     Peaking Factor: 323.0
        Unit Hydrograph: Uh323
                                   Storm Duration(hrs): 0.00
Time of Conc(min): 62.40
Time Shift(hrs): 0.00
    Rainfall File:
Rainfall Amount(in): 0.000
               Area(ac): 5.60
                                               Max Allowable Q(cfs): 999999.00
            Curve Number: 85.00
                 DCIA(%): 0.00
         Name: Offsite 209 Node: 209
Group: BASE Type: SCS Unit Hydrograph CN
                                                                           Status: Offsite
        Group: BASE
        Unit Hydrograph: Uh323 Peaking Factor: 323.0

Rainfall File: Storm Duration(hrs): 0.00

nfall Amount(in): 0.000 Time of Conc(min): 59.40

Area(ac): 5.88 Time Shift(hrs): 0.00

Curve Number: 85.00 Max Allowable Q(cfs): 999999.00
    Rainfall Amount(in): 0.000
                DCIA(%): 0.00
         Name: Offsite 211 Node: 211
                                                                           Status: Onsite
                                           Type: SCS Unit Hydrograph CN
        Group: BASE
        Unit Hydrograph: Uh323
Rainfall File:
nfall Amount(in): 0.000
                                                     Peaking Factor: 323.0
    Rainfall File:
Rainfall Amount(in): 0.000
                                               Storm Duration(hrs): 0.00
Time of Conc(min): 60.00
Time Shift(hrs): 0.00
               Area(ac): 11.58
           Curve Number: 85.00
                                               Max Allowable Q(cfs): 999999.00
                DCIA(%): 0.00
         Name: Offsite 213 Node: 213
Group: BASE Type: SCS Unit Hydrograph CN
                                                                           Status: Onsite
        Group: BASE
    Unit Hydrograph: Uh323
Rainfall File:
Rainfall Amount(in): 0.000
                                              Peaking Factor: 323.0
Storm Duration(hrs): 0.00
Time of Conc(min): 42.00
Time Shift(hrs): 0.00
               Area(ac): 4.47
           Curve Number: 85.00
                                               Max Allowable Q(cfs): 999999.00
                DCIA(%): 0.00
_________
```

Name: 205 Group: BASE Type: Stage/Area	Base Flow(cfs): 0.000	<pre>Init Stage(ft): 8.000 Warn Stage(ft): 11.000</pre>
Stage(ft) Area(ac		
0.000 0.000 8.000 0.000	4	
Name: 207 Group: BASE Type: Stage/Area	Base Flow(cfs): 0.000	Init Stage(ft): 8.000 Warn Stage(ft): 13.000
Stage(ft) Area(ac)	
8.000 0.000 9.000 0.059 10.000 0.090 11.000 0.118 12.000 0.146 13.000 0.174	0 0 0 0	
Name: 209 Group: BASE Type: Stage/Area	Base Flow(cfs): 0.000	Init Stage(ft): 9.000 Warn Stage(ft): 13.000
Stage(ft) Area(ac		•
9.000 0.002 10.000 0.085 11.000 0.121 12.000 0.156 13.000 0.192	0 0 0 0	
Name: 211 Group: BASE Type: Stage/Area	Base Flow(cfs): 0.000	Init Stage(ft): 10.000 Warn Stage(ft): 14.000
Stage(ft) Area(ac		
10.000 0.000 11.000 0.093 12.000 0.133 13.000 0.173 14.000 0.212	4 0 0 0	•
Name: 213 Group: BASE Type: Stage/Area	Base Flow(cfs): 0.000	Init Stage(ft): 11.000 Warn Stage(ft): 15.000
Stage(ft) Area(ac)	
11.000 0.000 12.000 0.056 13.000 0.089 14.000 0.116 15.000 0.144	4 0 0 0 0	
Name: BNDRY Group: BASE Type: Time/Stage	Base Flow(cfs): 0.000	Init Stage(ft): 5.000 Warn Stage(ft): 10.000
oundary Conditions were refer rom SR 46 over Lake Jesup pro PID 240163-1-52-01 JRWMD Permit No. 40-117-95925	ject	
Time(hrs) Stage(ft)	

0.00	5.000
24.00	5.500
48.00	6.000
72.00	6.400

Name: POND 2 Group: BASE

Base Flow(cfs): 0.000 Init Stage(ft): 6.700 Warn Stage(ft): 10.000 '

Type: Stage/Area

Initial Stage = NWL Elevation '
Warning Stage = Inside Berm Elevation '

	Area(ac)	Stage(ft)
•	4.0800	6.700
•	4.7000	10.000
1	5.4300	11.000

Length(ft): 67.70 Name: SD-1 From Node: 207 Group: BASE To Node: 205 Count: 2 Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both UPSTREAM DOWNSTREAM

Geometry: Circular Circular Span(in): 24.00 Rise(in): 24.00 24.00 Entrance Loss Coef: 0.70 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 24.00 Invert(ft): 8.100 7.830 Outlet Ctrl Spec: Use dc or tw Inlet Ctrl Spec: Use dn Manning's N: 0.013000 0.013000 Top Clip(in): 0.000 Bot Clip(in): 0.000 0.000 Stabilizer Option: None 0.000

Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

Name: SD-2 From Node: 209 Length(ft): 67.50 Group: BASE To Node: 207 Count: 2 Friction Equation: Average Conveyance DOWNSTREAM UPSTREAM Solution Algorithm: Automatic Geometry: Circular Flow: Both Circular Span(in): 24.00 Rise(in): 24.00 Entrance Loss Coef: 0.70 24.00 Exit Loss Coef: 0.00 24.00 Invert(ft): 8.980 8.710 Bend Loss Coef: 0.00 Manning's N: 0.013000 Outlet Ctrl Spec: Use dc or tw Inlet Ctrl Spec: Use dn 0.013000 Top Clip(in): 0.000 Bot Clip(in): 0.000 0.000

Stabilizer Option: None

Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

0.000

Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

From Node: 211 Length(ft): 64.00 Name: SD-3 Group: BASE To Node: 209 Count: 2

Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM
Geometry: Circular Circular
Span(in): 24.00 24.00
Rise(in): 24.00 24.00 Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.70 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Invert(ft): 10.010 9.750 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 Bot Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dn Stabilizer Option: None 0.000

Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

From Node: 213 Name: SD-4 Length(ft): 64.00

To Node: 211 Group: BASE Count: 2 Friction Equation: Average Conveyance

Solution Algorithm: Automatic HESTREAM DOWNSTREAM Geometry: Circular Circular Entrance Loss Coef: 0.70 Span(in): 24.00 24.00 Rise(in): 24.00 24.00 Invert(ft): 11.130 10.870 Manning's N: 0.013000 0,013000 0.000 Top Clip(in): 0.000 0.000 Bot Clip(in): 0.000

Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Outlet Ctrl Spec: Use dc or tw Inlet Ctrl Spec: Use dn Stabilizer Option: None

Flow: Both

Flow: Both

Stabilizer Option: None

Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

Length(ft): 557.00 Name: South OS Ditch From Node: 205 To Node: BNDRY Group: BASE Count: 1

UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Solution Algorithm: Automatic Geometry: Trapezoidal Trapezoidal Invert(ft): 7.830 5.600 TClpInitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0.060000 0.060000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.500 Exit Loss Coef: 1.000 Outlet Ctrl Spec: Use dc or tw Inlet Ctrl Spec: Use dn Bot Clip(ft): 0.000 0.000 Main XSec: AuxElev1(ft):

Aux XSec1: AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 15.000 15.000 LtSdSlp(h/v): 4.00

Name: OCS-2 ORIFICE From Node: POND 2 To Node: BNDRY Group: BASE Flow: Both Count: 1

Type: Vertical: Mavis Geometry: Circular '

4.00

4.00

Span(in): 5.50 Rise(in): 5.50 Invert(ft): 6.200

RtSdSlp(h/v): 4.00

Control Elevation(ft): 6.700 TABLE

Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600

Name: OCS-2 Weir01 From Node: POND 2 To Node: BNDRY Group: BASE

Count: 1 Flow: Both Type: Vertical: Mavis Geometry: Rectangular

Span(in): 60.00 Rise(in): 32.76

```
Invert(ft): 7.270
     Control Elevation(ft): 7.270
                                   TABLE
          Bottom Clip(in): 0.000
            Top Clip(in): 0.000
      Weir Discharge Coef: 3.200
    Orifice Discharge Coef: 0.600
      Name: OCS-2 Weir02 From Node: POND 2
                          To Node: BNDRY
      Group: BASE
      Flow: Both
                             Count: 1
      Type: Vertical: Mavis
                         Geometry: Rectangular
             Span(in): 732.00
Rise(in): 999999999.00
Invert(ft): 10.000
     Control Elevation(ft): 10.000
                                   TABLE
          Bottom Clip(in): 0.000
    Top Clip(in): 0.000
Weir Discharge Coef: 3.200
Orifice Discharge Coef: 0.600
Name: 10YR24HR
   Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\10YR24HR.R32
    Override Defaults: Yes
   Storm Duration(hrs): 24.00
       Rainfall File: Flmod
   Rainfall Amount(in): 7.50
Time(hrs)
           Print Inc(min)
100.000
           1.00
      Name: 25YR24HR
   Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\25YR24HR.R32
    Override Defaults: Yes
   Storm Duration(hrs): 24.00
       Rainfall File: Flmod
   Rainfall Amount(in): 8.60
           Print Inc(min)
100.000
           1.00
      Name: 3YR24HR
   Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\3YR24HR.R32
    Override Defaults: Yes
   Storm Duration (hrs): 24.00
       Rainfall File: Flmod
   Rainfall Amount(in): 5.60
Time(hrs)
           Print Inc(min)
           1.00
Name: 10YR24HR
                          Hydrology Sim: 10YR24HR
   Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\10YR24HR.I32
    Execute: Yes
                    Restart: No
                                      Patch: No
 Alternative: No
     Max Delta Z(ft): 1.00
                                      Delta Z Factor: 0.00500
   Time Step Optimizer: 10.000
      Start Time(hrs): 0.000
                                      End Time(hrs): 30.00
   Min Calc Time(sec): 0.5000
                                   Max Calc Time(sec): 60.0000
      Boundary Stages:
                                      Boundary Flows:
```

Print Inc(min) Time(hrs)

30.000 5.000

Group Run BASE

Name: 25YR24HR Hydrology Sim: 25YR24HR

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\25YR24HR.I32

Execute: Yes

Alternative: No

Restart: No Patch: No

Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000
Start Time(hrs): 0.000
Min Calc Time(sec): 0.5000

Yes

Delta Z Factor: 0.00500

End Time(hrs): 30.00 Max Calc Time(sec): 60.0000 Boundary Flows:

Boundary Stages:

Time(hrs) Print Inc(min)

30.000 5.000

Group BASE Yes

Name: 3YR24HR Hydrology Sim: 3YR24HR

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\3YR24HR.I32

Execute: Yes Alternative: No

Restart: No

Patch: No

Delta Z Factor: 0.00500

Max Delta Z(ft): 1.00

Time Step Optimizer: 10.000 Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000 End Time(hrs): 30.00 Max Calc Time(sec): 60.0000

Boundary Stages:

Boundary Flows:

Time(hrs) Print Inc(min)

30.000 5.000

_____ BASE Yes

SR 46 PD&E MODIFIED BASIN 2 POST-DEVELOPMENT CONDITIONS NODE MIN / MAX REPORT

Max Outflow cfs	0.00 23.23 0.00	0.00	
Max Time Outflow hrs	0.00 12.80 0.00		
Max Inflow cfs	82.02 87.87 86.65*	61.51	J.P.
Max Time Inflow hrs	12.76 12.07 12.87	12.75	4.9
Max Surf Area ft2	4222.62 192882.36 4222.61	4222.04 190185.63	for Basin 23/2 pre= 91.17cls 0-117-95925-5
Warning Max Delta Stage Stage ft ft	0.0003	0.0003	asin 23
Warning M Stage ft	10.00 10.00 10.00	10.00	5 for Basin 23/04
Max Stage ft	8 50 8 50 8 50 8 50 8 50 8 50 8 50 8 50	5.62 8.22	Éź
Max Time Stage hrs	30.00 12.80 29.99	30.00 12.87	
Simulation	10YR24HR 10YR24HR 25YR24HR	3YR24HR 3YR24HR 3YR24HR	than pre-ductionment (p
Group	BASE BASE BASE	BASE	ess than pre-
Мате	BNDRY POND 2 BNDRY	BNDRY POND 2	*

PRE/POST DISCHARGE SUMMARY

WILBUR SMITH

PROJECT TITLE: SR 46
PROJECT NUMBER: 24016315201

DATE:

October 6, 2009

CALC. BY:

CHECKED BY:

PQS

BASIN 1 - SR 46

Simulation	Name	Existing Conditions Max: Inflow (cfs)	Proposed Conditions Max Inflow (cfs)	Δ Discharge = (Pre - Post)**
25 YR - 24 HR	OUTFALL	46.11	48.09	-1.98
10 YR - 24 HR	OUTFALL	40.07	41.10	-1.03
3 YR - 24 HR	OUTFALL	26.72	23.50	3.22

BASIN 2 - SR 46

Simulation	Name:	Existing Conditions Max. Inflow (cfs)	Proposed Conditions Max inflow (cfs)	Δ Discharge = (Pre - Post)*
25 YR - 24 HR	OUTFALL	91.17 米	91.38	-0.21
10 YR - 24 HR	OUTFALL	82.19	78.64	3.55
3 YR - 24 HR	OUTFAIL	59.00	46,94	12.05

* Increase of 0.21 cfs for the 25yr/24hr storm will not result in adverse impacts as it is less than 0.5% of the total discharge.

[&]quot; Increase of 1.98 cfs for the 25yr/24hr storm will not result in adverse impacts as it is less than 0.2% of the lowest annual mean discharge rate for the St. Johns River (years 2005 thru 2008) at the nearest gage location (see attached map and documentation).

mana Basins decemberates and an arrangements and arrangements and arrangements and arrangements and arrangements are arrangements. Name: Basin 2 Node: Pond 2 Status: Onsite Type: SCS Unit Hydrograph CN Group: BASE Unit Hydrograph: Uh323 Rainfall File: Peaking Factor: 323.0 Storm Duration(hrs): 0.00 Time of Conc(min): 10.00 Rainfall Amount(in): 0.000 Area(ac): 21.46 Time Shift(hrs): 0.00 Curve Number: 90.67 DCIA(%): 0.00 Max Allowable Q(cfs): 999999.00 _______ Name: BNDRY Base Flow(cfs): 0.000 Init Stage(ft): 5.000 Group: BASE Warn Stage(ft): 10.000 Type: Time/Stage Boundary Conditions were referenced from SR 46 over Lake Jesup project FPID 240163-1-52-01 SJRWMD Permit No. 40-117-95925-3 Time(hrs) Stage(ft) 5.000 0.00 24.00 5.500 48.00 6.000 72.00 6.400 Name; POND 2 Base Flow(cfs): 0.000 Init Stage(ft): 7.270 Group: BASE Warn Stage(ft): 10.000 Type: Stage/Area Initial Stage = Weir Elevation Warning Stage = Inside Berm Elevation Stage(ft) Area(ac) 6.700 4.0800 10.000 4.7000 5.4300 Name: OCS-2 ORIFICE From Node: POND 2 To Node: BNDRY Group: BASE Count: 1 Flow: Both Type: Vertical: Mavis Geometry: Circular Span(in): 5.50 Rise(in): 5.50 Invert(ft): 6.200 Control Elevation(ft): 6.700 TABLE Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600

Name: RECOVERY Hydrology Sim;

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\TCPR\RECOVERY.I32

Execute: Yes Alternative: No

Restart: No

Patch: No

Max Delta Z(ft): 1.00 Time Step Optimizer: 10,000 Delta Z Factor: 0.00500

SR 46 PD&E MODIFIED BASIN 2 POST-DEVELOPMENT CONDITIONS MODIFIED POND 2 RECOVERY ANALYSIS INPUT ALL DATA REPORT

> Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000 Boundary Stages:

End Time(hrs): 30.00 Max Calc Time(sec): 60.0000 Boundary Flows:

Time(hrs) Print Inc(min)
30.000 5.000

Group Run
BASE Yes

SR 46 PD&E
MODIFIED BASIN 2 POST-DEVELOPMENT CONDITIONS
MODIFIED POND 2 RECOVERY ANALYSIS
NODE TIME SERIES REPORT

														17 X X 2 E G																														
														Det 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S																													
													***		4																													
	Total	Vol Out af	1.13	1.13	⊣.	1.14	1.14	1.15 2.15	1.15	1,15	1.16	1.16				1.17	1.17	1.18	1.18	1.18	1.19	1.19	1.19	1.19	1.20	1.20	1.20	1.21	1.21	1.21	1.21	1.22	1.22	1.22	11.	1.23	1.23	1.24		1.24		1.25		1.25
	Total	voi in af	00.00	00.0	00.0	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	00.0	00.00	00.00	00.0	00.0	00.0	00.0	00.0	00.00	00.0	00.0	00.0	00.0	0.00	00.00	0.00	0.00	0.00	00.00	000	00.00	00.0	00.00	00.00	00.00	00.0	00.00	0.00	00.00
	Total	Outrlow cfs	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43		0.43		0.42		0.42							0.42			0.42	0.42	7 7 7	24.0	0.44	0.42	0.41		0.41	0.41	0,41	0.41	0.41	0.41
	Total	Intlow	00.0	00.0	00.00	00.00	00.00	0.00	00.0	00.0	00.0	0.00	00.00	00.00	00.0	00.0	00.00	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.00	00.00	00.0	00.00	00.0	0.00	0.00	0.00	0.00	00.0	96	000	00.0	00.0	00.00	00.00	0.00	00.00	00.0	00.0
	Sur	Area ft2	180163	180157	180151	180145	180139	180133	180128	180122.23	180116.38	180110.53	180104	180098	44		Н		Н	_	180058	٠,	_	٠.	٠,	٠,	- -I	Н		Н	Н	┥,	٠,٠	170077 07	٠.	179966 62	٠.	179	179	179944.	179938.	179	179927.11	-
	Warning	Stage ft	10,00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10,00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	00.01	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	Stage	ft	7.00	7.00	7,00	7.00	7.00	66.9	9 9 9	6,00	φ. φ.	6,99	66.9	66.9	66.9	66.9	66.9	6.99	6.99	6.99	6.99	6.98	6.98	6.98	6.98	6.98	6.98	6.98	6.98	6.98	6.98	φ. φ.	י טינט טינט	, d 9, 0	00.0		6.97	76.6	6.97	6.97	6.97	6.97	6.97	6.97
	Time	hrs	26.52	26.60	26.68	26.77	26.85	26.93	27.02	27.10	27.18	27.27	27.35	27.43	27.52	27.60	27.68	27.77	27.85	27.93	28.02	28.10	28.18	28.27	28.35	28.43	28.52	28.60	28.68	28.77	28.85	28.93	29.02	79.10	00.00	. oc.	29. 43	29.72	29.60	29.68	29.77	29.85	29.93	30.01
	Group		BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	BASE	DASE	DASE	TO SEE	E E E	RASE	RASE	BASE	BASE	BASE	BASE	BASE	BASE
Wies peroni	Node		POND 2	POND 2	POND 2			POND 2							POND 2	3		POND 2			POND 2		POND 2					POND 2				POND 2		Z CINOS							POND 2	POND 2	POND 2	POND 2
NOTE THE SELLES VELOVE	imulation		RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERS	PECOVERY	RECOVERS	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY	RECOVERY

```
Name: Basin 2
                                            Node: Pond 2
                                            Type: SCS Unit Hydrograph CN
        Group: BASE
        Unit Hydrograph: Uh323
                                                       Peaking Factor: 323.0
                                          Feaking Factor: 323.0
Storm Duration(hrs): 0.00
Time of Conc(min): 15.00
Time Shift(hrs): 0.00
Max Allowable Q(cfs): 999999.00
          Rainfall File:
    Rainfall Amount(in): 0.000
           Area(ac): 21.46
Curve Number: 90.67
DCIA(%): 0.00
        Name: Offsite 205 Node: 205
Group: BASE Type: SCS Unit Hydrograph CN
                                                                            Status: Onsite
        Unit Hydrograph: Uh323
                                                      Peaking Factor: 323.0
                                    Storm Duration(hrs): 0.00
Time of Conc(min): 61.80
Time Shift(hrs): 0.00
    Rainfall File:
Rainfall Amount(in): 0.000
               Area(ac): 8.57
            Curve Number: 85.00
                                              Max Allowable Q(cfs): 999999.00
                DCIA(%): 0.00
         Name: Offsite 207 Node: 207
Group: BASE Type: SCS Unit Hydrograph CN
                                                                            Status: Onsite
        Group: BASE
                                   Peaking Factor: 323.0
Storm Duration(hrs): 0.00
Time of Conc(min): 62.40
Time Shift(hrs): 0.00
Max Allowable Q(cfs): 999999.00
        Unit Hydrograph: Uh323
          Rainfall File:
    Rainfall Amount(in): 0.000
              Area(ac): 5.60
            Curve Number: 85.00
                 DCIA(%): 0.00
         Name: Offsite 209 Node: 209
Group: BASE Type: SCS Unit Hydrograph CN
                                                                            Status: Offsite
        Group: BASE
        Unit Hydrograph: Uh323
Rainfall File:
                                                     Peaking Factor: 323.0
    Rainfall File:
Rainfall Amount(in): 0.000
                                                Storm Duration(hrs): 0.00
                                               Time of Conc(min): 59.40
Time Shift(hrs): 0.00
Max Allowable Q(cfs): 999999.00
              Area(ac): 5.88
           Curve Number: 85.00
DCIA(%): 0.00
        Name: Offsite 211 Node: 211
Group: BASE Type: SCS Unit Hydrograph CN
                                                                            Status: Onsite
        Group: BASE
   Unit Hydrograph: Uh323
Rainfall File:
Rainfall Amount(in): 0.000
Area(ac): 11.58
                                                     Peaking Factor: 323.0
                                               Storm Duration(hrs): 0.00
Time of Conc(min): 60.00
Time Shift(hrs): 0.00
                                              Max Allowable Q(cfs): 999999.00
                 DCIA(%): 0.00
         Name: Offsite 213
                                     Node: 213
Type: SCS Unit Hydrograph CN
        Group: BASE
                                                Peaking Factor: 323.0
Storm Duration(hrs): 0.00
    Unit Hydrograph: Uh323
Rainfall File:
Rainfall Amount(in): 0.000
                                              Time of Conc(min): 42.00
Time Shift(hrs): 0.00
Max Allowable Q(cfs): 999999.00
               Area(ac): 4.47
           Curve Number: 85.00
                DCIA(%): 0.00
```

Name: Group: Type:			Base	Flow(cfs):	0.000	<pre>Init Stage(ft): Warn Stage(ft):</pre>	
Stage	ft)	Area(ac)					
0.	000	0.0004 0.0004					
Name: Group:	207			Flow(cfs):		Init Stage(ft): Warn Stage(ft):	
Stage	ft)	Area(ac)					
8. 9. 10. 11.	000 000 000 000 000 000	0.0004 0.0590 0.0900 0.1180 0.1460 0.1740					
Name: Group:			Base	Flow(cfs):	0.000	Init Stage(ft): Warn Stage(ft):	
Stage	(ft)	Area(ac)					
9. 10. 11. 12.	000 000 000 000 000	0.0020 0.0850 0.1210 0.1560 0.1920					
Name: Group: Type:	211			Flow(cfs):	0.000	Init Stage(ft): Warn Stage(ft):	10.000
Stage		Area(ac)					
11. 12. 13.	000 000 000 000 000	0.0004 0.0930 0.1330 0.1730 0.2120					
Name: Group: Type;	213	• • • • • • • • • • • • • • • • • • •		Flow(cfs):	0.000	Init Stage(ft): Warn Stage(ft):	
	ft)						
11. 12. 13. 14. 15.	000 000 000 000 000	0.0004 0.0560 0.0890 0.1160 0.1440					
Name: Group:	BNDRY			Flow(cfs):		<pre>Init Stage(ft): Warn Stage(ft):</pre>	5.000

INPUT ALL DATA REPORT 10 YEAR / 24 HOUR TAILWA	ATER CALCULATION				
SJRWMD Permit No. 40-117	7-95925-3				
Time(hrs) St					
0.00					
24.00 48.00	5.500 6.000 6.400				
48.00 72.00	6.400				
Name: POND 2 Group: BASE Type: Stage/Area			Init Stage(ft Warn Stage(ft): 7.270 & Weir Lley): 10.000	
Initial Stage = Weir Ele Warning Stage = Inside E					
Stage(ft) A					
6.700	4.0800				
6.700 10.000 11.000	5.4300				
==== Pipes ====================================					
Name: SD-1	From Node:		Length(ft):		
Group: BASE	To Node:	205		Average Conveyance	
UPSTREAM Geometry: Circular			Solution Algorithm: Flow:		
Span(in): 24.00	Circular 24.00		· Entrance Loss Coef:		•
Rise(in): 24.00	24.00		Exit Loss Coef:		
Invert(ft): 8.100 Manning's N: 0.013000	7.830 0.013000		Bend Loss Coef: Outlet Ctrl Spec:		
Manning's N: 0.013000 Top Clip(in): 0.000 Bot Clip(in): 0.000	0.000		Inlet Ctrl Spec: Stabilizer Option:	Use dn	
Upstream FHWA Inlet Edge Circular Concrete: Squar					
Downstream FHWA Inlet Ed Circular Concrete: Squar					
Name: SD-2	From Node:		Length(ft):	67.50	
Group: BASE	To Node:	207	Count: Friction Equation:		
	DOWNSTREAM		Solution Algorithm:		
Geometry: Circular	Circular		Flow:		
Span(in): 24.00 Rise(in): 24.00	24.00 24.00		Entrance Loss Coef: Exit Loss Coef:		
Invert(ft): 8.980	8.710		Bend Loss Coef:	0.00	
Manning's N: 0.013000 Top Clip(in): 0.000	0.013000 0.000		Outlet Ctrl Spec: Inlet Ctrl Spec:		
Bot Clip(in): 0.000	0.000		Stabilizer Option:		
Upstream FHWA Inlet Edge Circular Concrete: Squar Downstream FHWA Inlet Ed Circular Concrete: Squar	re edge w/ headwall dge Description:				
Name: SD-3	From Node:		Length(ft);	64.00	
Group: BASE	To Node:		Count:	2	
			rriction Equation:	Average Conveyance	

Solution Algorithm: Automatic

Inlet Ctrl Spec: Use dn

Flow: Both
Entrance Loss Coef: 0.70
Exit Loss Coef: 0.00
Bend Loss Coef: 0.00
Outlet Ctrl Spec: Use dc or tw

DOWNSTREAM

Circular 24.00 24.00 9.750 0.013000

0.000

UPSTREAM

Geometry: Circular Span(in): 24.00 Rise(in): 24.00 Invert(ft): 10.010 Manning's N: 0.013000 Top Clip(in): 0.000

SR 46 PD&E MODIFIED BASIN 2 POST-DEVELOPMENT CONDITIONS MODIFIED POND 2 INPUT ALL DATA REPORT 10 YEAR / 24 HOUR TAILWATER CALCULATION

Bot Clip(in): 0.000

0.000

Stabilizer Option: None

Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

> Length(ft): 64.00 From Node: 213 Name: SD-4

Group: BASE

To Node: 211

Count: 2

Friction Equation: Average Conveyance

UPSTREAM DOWNSTREAM Circular

Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.70

Geometry: Circular Span(in): 24.00 Rise(in): 24.00 24.00 24.00 Invert(ft): 11.130 10.870 Manning's N: 0.013000 0.013000

Exit Loss Coef: 0.00 Bend Loss Coef: 0.00

Top Clip(in): 0.000 0.000 Bot Clip(in): 0.000 0.000

Outlet Ctrl Spec: Use dc or tw Inlet Ctrl Spec: Use dn Stabilizer Option: None

Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall

Name: South OS Ditch

From Node: 205

Length(ft): 557.00

Group: BASE

To Node: BNDRY

Count: 1

UPSTREAM Geometry: Trapezoidal Invert(ft): 7.830 TClpInitZ(ft): 9999.000

Manning's N: 0.060000 Top Clip(ft): 0.000

DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic 5.600 Flow: Both 9999.000 Contraction Coef: 0.000 0.060000 Expansion Coef: 0.000 0.000 Entrance Loss Coef: 0.500 0.000 Exit Loss Coef: 1.000

Bot Clip(ft): 0.000 Main XSec: ·AuxElev1(ft): Aux XSec1: AuxElev2(ft):

Outlet Ctrl Spec: Use dc or tw Inlet Ctrl Spec: Use dn Stabilizer Option: None

Aux XSec2: Top Width(ft):

Depth(ft): Bot Width(ft): 15.000 15.000

LtSdSlp(h/v): 4.004.00 RtSdSlp(h/v): 4.00 4.00

Name: OCS-2 ORIFICE & Group: BASE AGGUNANT

From Node: POND 2 To Node: BNDRY

Count: 1 Flow: None * Classed
Type: Vertical: Mavis Geometry: Circular

> Span(in): 5.50 Rise(in): 5.50 Invert(ft): 6.200

Control Elevation(ft): 6.700

TABLE

Bottom Clip(in): 0.000 Top Clip(in): 0.000

Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600

```
_____
      Name: OCS-2 Weir01
                      From Node: POND 2
                        To Node: BNDRY
     Group: BASE
                          Count: 1
      Flow: Both
      Type: Vertical: Mavis
                        Geometry: Rectangular
              Span(in): 60.00
            Rise(in): 32.76
Invert(ft): 7.270
    Control Elevation(ft): 7.270
                                TABLE
         Bottom Clip(in): 0.000
      Top Clip(in): 0.000
Weir Discharge Coef: 3.200
    Orifice Discharge Coef: 0.600
      Name: OCS-2 WeirO2 From Node: POND 2
                       To Node: BNDRY
     Group: BASE
      Flow: Both
                           Count: 1
      Type: Vertical: Mavis
                       Geometry: Rectangular
            Span(in): 732.00
Rise(in): 999999999.00
Invert(ft): 10.000
    Control Elevation(ft): 10.000
                                TABLE
         Bottom Clip(in): 0.000
      Top Clip(in): 0.000
Weir Discharge Coef: 3.200
    Orifice Discharge Coef: 0.600
Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\10YR24HR.R32
    Override Defaults: Yes
  Storm Duration(hrs): 24.00
      Rainfall File: Flmod
  Rainfall Amount(in): 7.50
          Print Inc(min)
Time(hrs)
100.000
      Name: 25YR24HR
   Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\25YR24HR.R32
    Override Defaults: Yes
  Storm Duration(hrs): 24.00
      Rainfall File: Flmod
  Rainfall Amount (in): 0.60
Time(hrs)
          Print Inc(min)
100,000
          1.00
      Name: 3YR24HR
   Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\3YR24HR.R32
    Override Defaults: Yes
  Storm Duration(hrs): 24.00
      Rainfall File: Flmod
  Rainfall Amount(in): 5.60
       Print Inc(min)
Time(hrs)
100.000
          1.00
_______
Name: 10YR24HR
                        Hydrology Sim: 10YR24HR
```

SR 46 PD&E MODIFIED BASIN 2 POST-DEVELOPMENT CONDITIONS MODIFIED POND 2 INPUT ALL DATA REPORT 10 YEAR / 24 HOUR TAILWATER CALCULATION

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\10YR24HR.I32

Execute: Yes

Restart: No

Patch: No

Alternative: No

Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000

Start Time(hrs): 0.000

Min Calc Time(sec): 0.5000 Boundary Stages:

Delta Z Factor: 0.00500

End Time(hrs): 30.00 Max Calc Time(sec): 60.0000

Boundary Flows:

Time(hrs) Print Inc(min)

30,000

5.000

Group

BASE Yes

Hydrology Sim: 25YR24HR Name: 25YR24HR

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\25YR24HR.I32

Execute: No Alternative: No

Restart: No

Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000 Start Time(hrs): 0.000

Min Calc Time(sec): 0.5000

Delta Z Factor: 0.00500

End Time(hrs): 30.00 Max Calc .Time(sec): 60.0000

Boundary Stages: Boundary Flows:

Time(hrs) Print Inc(min)

30.000

5.000

Group

Run

BASE

Name: 3YR24HR Hydrology Sim: 3YR24HR

Restart: No

Filename: I:\Projects\12722145 SR46 PDE\drainage\Basin 2\ICPR\3YR24HR.I32

Execute: Yes Alternative: No

Patch: No

Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000 Start Time(hrs): 0.000

Min Calc Time(sec): 0.5000

Boundary Stages:

Delta Z Factor: 0.00500

End Time(hrs): 30.00

Max Calc Time(sec): 60.0000

Boundary Flows:

Time(hrs) Print Inc(min)

30.000

5.000

Group BASE

Run Yes

SR 46 PD&E
MODIFIED BASIN 2 POST-DEVELOPMENT CONDITIONS
MODIFIED FOND 2
NODE TIME SERIES REPORT
10 YEAR / 24 HOUR TAILWATER CALCULATION

	= 8.12 Ct WGVD at inflows Ot 2 8.66 Ct Cpermitted coulting
	Twoy = 2.12 8.12 0+ 6.5
Total Vol Out af	14.00 14.00 15.40 16
Total Vol In af	11.05 11.05
Total Outflow cfs	2 2 3 3 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3
Total Inflow cfs	8 . 25 8 . 45 8 . 45 8 . 65 8 . 65 8 . 65 8 . 65 10 . 02 11. 2. 28 11. 12 82. 71 82. 71 82. 71 82. 71 82. 71 83. 74 83. 74 84 82. 71 83. 74 84 82. 71 82. 71 83. 74 84 85. 74 86. 88 87. 71 87. 72 88. 88 88. 88 88 88. 88 88 88. 88 88 88 88 88 88 88 88 88 88 88 88 88
g Surface re Area t ft2	0 184834.20 184909.55 10 1854909.55 10 185137.95 10 18523.30 10 18523.30 10 18523.30 10 18546.11 10 185328.65 10 18546.31 10 185636.83 10 185636.83 10 185636.83 10 185636.83 10 185836.83 10 195841.75 10 195841.27 10 192409.83 10 192409.83 10 192409.83 10 192409.83 10 192409.75 10 192836.44 10 192817.53 10 192836.44 10 192836.44
. Warning Stage ft	00.000
Stage	C
Тіme hrs	10.92 11.08 12.00 13.00
dnoxb	BASE BASE BASE BASE BASE BASE BASE BASE
Node	POND 2 POND 3 PO
Simulation	10YR24HR 10YR24HR

3/31/2008

STORM SEWER HYDRAULICS

Page 1

System Basin 2

Area 1 Area 2 Area 3 0 95 0 25 CONDITIONS Storm Event
Zone Freq
7 ** 10 Zone 8 66 8 66 × Outfall Tailwater Elevation Exit Loss at Outfall Storm Sewer Control Elevatio Organization Wilbur Smith Associates Inc Designed by AN Checked by PS Number 24016315201 Description SR 46 Lake Jessup County Seminole PROJECT

Units ENGLISH

Automated Storm sewer Analysis & Design (ASAD) copyright 1992 2001 Hiteshew Engineering Systems Inc Ph (352) 383 4191 Portions of ASAD were developed by Kenneth J. Leeming P.E. at International Engineering Consultants. Inc

T60v11 RPT 1/16/2001

	OUADA OTEDIOTION	00.70.5	TODMMA	TED TOE A	TENACNIT AN	IAL VEIE	Blue Numbers =	Input data	
WATERSHEL	CHARACTERISTICS	GO TO STORMWATER TREATEMENT ANALYSIS				VALTSIS	Red Numbers =	Calculated or Carryover	
SELECT CATC	HMENT CONFIGURATION	CLICK ON CELL BELOW TO SELECT CONFIGURATION A - Single Catchment					VIEW CATCHMENT CONFIGURATION		
CATCHMENT NO.1 CHARAC	TERISTICS:	\ If i	nixed land	uses (sid	e calculatio	n)	OVERWRITE DEFAULT O	ONCENTRATIONS USING:	
	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:	
Pre-development land use:	Undeveloped / Rangeland / Forest (N=1) CLICK ON CELL BELOW TO SEL					*******	EMC(N): mg/L EMC(P): mg/L	mg/L mg/L	
with default EMCs Post-development land use:	Highway: TN=1,640 TP=0.220						PMC(F).	ingic	
with default EMCs			Total				CLICK ON CELL B	BELOW TO SELECT:	
Total pre-development catchin		21.70					USE DEFAULT C	ONCENTRATIONS	
Total post-development catchr		21.46 89.25	AC						
Pre-development Non DCIA C Pre-development DCIA percer		0.00	%		Pre-develor	oment Annual	Mass Loading - Nitrogen:	29.455 kg/year	
Post-development Non DCIA (82.62	~		Pre-develop	oment Annual	Mass Loading - Phosphorus:	1.409 kg/year	
Post-development DCIA perce	ntage:	52.30					l Mass Loading - Nitrogen:	64.012 kg/year	
	for rainfall excess not loadings)	5.91					I Mass Loading - Phosphorus:		
CATCHMENT NO.2 CHARAC				,	e calculatio		1	_T CONCENTRATIONS:	
	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST;	
Pre-development land use:	CLICK ON CELL BELOW TO SEL	FCT	 				EMC(N): mg/L EMC(P): mg/L	mg/L mg/L	
Post-development land use:	CLICK ON CELL BELOW TO SEL	.EG1	_				EMO(1 /.	mg/L	
ost-development land use.			Total				CLICK ON CELL P	ELOW TO SELECT:	
Total pre-development catchin			AC				USE DEFAULT C	ONCENTRATIONS	
Total post-development catchr			AC						
Pre-development Non DCIA C Pre-development DCIA percer		-	%		Pre-develor	oment Annual	Mass Loading - Nitrogen:	kg/year	
Post-development Non DCIA (nage. CN:		/-				Mass Loading - Phosphorus:	kg/year	
Post-development DCIA perce	intage:		%				al Mass Loading - Nitrogen:	kg/year	
Estimated Area of BMP (used	for rainfall excess not loadings)		AC				al Mass Loading - Phosphorus:		
CATCHMENT NO.3 CHARAC				,	le calculation	-		_T CONCENTRATIONS:	
	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L	POST: mg/L	
Pre-development land use:	CLICK ON CELL BELOW TO SEL	FCT					EMC(N): mg/L EMC(P): mg/L	mg/L	
Post-development land use:	GEIGN CA GEEL BELOW 10 GE		1				-	, , , , , , , , , , , , , , , , , , ,	
t dot dovelopment land doo.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Total				CLICK ON CELL E	SELOW TO SELECT:	
Total pre-development catchm			AC				USE DEFAULT C	ONCENTRATIONS	
Total post-development catchi Pre-development Non DCIA C			AC						
Pre-development DCIA percer			%		Pre-develor	pment Annual	Mass Loading - Nitrogen:	kg/year	
Post-development Non DCIA					Pre-develo	pment Annual	Mass Loading - Phosphorus:	kg/year	
Post-development DCIA perce			%				al Mass Loading - Nitrogen:	kg/year	
Estimated Area of BMP (used	for rainfall excess not loadings)		AC		Post-develo	opment Annua	al Mass Loading - Phosphorus:	kg/year	
CATCHMENT NO.4 CHARAC	TERISTICS:	\	mixed lar	ıd uses (sid	le calculation	on)	OVERWRITE DEFAUL	_T CONCENTRATIONS:	
	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:	
Pre-development land use:	CLICK ON CELL BELOW TO SEL	ECT					EMC(N): mg/L EMC(P): mg/L	mg/L mg/L	
Post-development land use:	CLICA ON CELL BELOW TO SEL	.EU1	 				, ,		
ĺ			Total				CLICK ON CELL E	BELOW TO SELECT:	
Total pre-development catchm			AC AC				USE DEFAULT C	ONCENTRATIONS	
Total post-development catchi Pre-development Non DCIA C			1				**************************************		
Pre-development DCIA percer	ntage:		%				Mass Loading - Nitrogen:	kg/year	
Post-development Non DCIA			0/				Mass Loading - Phosphorus:	kg/year	
Post-development DCIA perce	entage: for rainfall excess not loadings)		% AC				el Mass Loading - Nitrogen: el Mass Loading - Phosphorus:	kg/year kg/year	
Lambated Alea of Divir (05eu	TOT TURNIUM GAOGSS FIOT TODGGITIGGT	Terralegoard account (9000)	7~					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

		2 Catchment 3 Catchment 4 0 0.000 0.000 0.000 ac 0 0.000 ac NO NO % % % % % % % % % % % % % % % %	0.00 0.00 ft 0.000 0.000 ac-ft	F 67 >	is a point of diminished return as the permanent pool volume is substantially increased. Therefore, to provide the most economical BMP treatment system, other alfernatives such as "treatment trains" and compensatory treatment should be considered.
TION:		Catchment 1 Catchment 2 21.700 0.000 15.550 0.000 162.00 0.000 162.00 0.000 162.00 0.000 163.985 83.595 83.595 74.156 NO	11.86 0.00 8.844 0.000	■ Efficiency Curve (P) System Efficiency (P) CAT 1 System Efficiency (P) CAT 2 System Efficiency (P) CAT 3 System Efficiency (P) CAT 4 Efficiency Curve (N) CAT 4 Efficiency Curve (N)	CAT 1 System Efficiency (N) CAT 2 CAT 3 System Efficiency (N) CAT 3 System Efficiency (N) CAT 4
WET DETENTION:	WET DETENTION POND SERVING:	Total pre-development catchment area: Total post-development catchment area: Average annual residence time (between 1 and 500 days): Littoral Zone used in the design: Littoral Zone efficiency credit (user specifies 10, 15, or 20%): Total Nitrogen removal required: Total Nitrogen removal efficiency provided: Total Phosphorous removal efficiency provided: Is the wet detention sufficient: Wet Detention Pond Characteristics:	Permanent Pool Depth: Minimum Permanent Pool Volume:	ment Efficiency (%): 40 70 70 70 70 70 70 70 70 70	20

Input data Calculated or Carryover	ENT ANALYSIS	ATMENT SYSTEM IN SERIES WITH WET IN SERIES WITH WET DETENTION.	Catchment 1 Catchment 2 Catchment 3 Catchment 4 20.734		UCABLE ST) WHE (BDV) WOVERSON WHE (BDV) WHE (BDV)	dated March 2010, by the Department of Environmental ids/erp/rules/stormwater, March 2010
Blue Numbers = Cale	GO TO STORMWATER TREATMENT ANALYSIS	REQUIRED REMAINING TREATMENT EFFICIENCIES OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION. USE FOR SIZING OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION.	Remaining treatment efficiency needed (Nitrogen): 20.734	:(sn	TOP OF BANK (TOB) FREEBOARD BETWEEN EOE AND TOB FREEBOARD BETWEEN EOE AND TOB OVERFLOW WATER ELEVATION (WEIR CREST) SAFETY GRAFTE OPTIONAL LITTORAL ZONE WITH A 6:1 (H TO Y) OR FLATTER SIDE SLOPE OTHERWISE, POND SIDE SLOPE OTHERWISE, POND SIDE SLOPE SEASONAL HIGH SEASONAL HIGH SEASONAL HIGH SEASONAL HIGH SEASONAL HIGH SEASONAL HIGH SEASONAL WATER LEVEL NWL = THE HIGHER OF: 1. THE NORMAL WET SEASON TABLE TABLE 2. THE SHGWT MINUS SIX (6) INGHES INGHES 1. THE NORMAL WET SEASON TABLE TABLE TYPICAL X-SECTION OF A WET DETENTION SYSTEM	Source of Graphic: draft STORMWATER QUALITY APPLICANT'S HANDBOOK dated March 2010, by the Department of Environmental Protection, available at: http://www.dep.state.fl.us/water/wetlands/erp/rules/stormwater, March 2010

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin B	MADE BY:	DTL	11/14/13
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	64130/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin B / Pond B1 - Suburban Best Fit					
Open Space - Fair Conditions	Basinger (10%)	D	84 ·	1.92	161.28
Open Space - Fair Conditions	St. Johns (40%)	B/D	69 -	7.70	531.30
Open Space - Fair Conditions	Immokalee (20%)	B/D	69	3.85	265.65
Open Space - Fair Conditions	Pomello (10%)	С	79	1.92	151.68
Open Space - Fair Conditions	Felda (10%)	D	84 ·	1.92	161.28
Open Space - Fair Conditions	Canova (10%)	B/D	69	1.92	132.48
Impervious (Paved parking, roads, etc.)			98 .	5.16	505.68
Pond Footprint	St. Johns	B/D	69 ·	4.59	316.71
			TOTALS	28.98	2226.06

COMPOSITE CN	- 76.81
COMPOSITE CN	, /0.91

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RU	NOFF VOLUME IS BASED ON THE	SCS EQUATE	ON AND IS A	S FOLLOWS	:
1) DETERMINE SOIL STORAGE -	s	S = (1000 / C	N)-10		(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S)	S)^2 / (P + 0.8	*S)	(inches)
		P = rainfall in	inebes		
		1 100001000			
3) DETERMINE RUNOFF VOLUM	E - V(R)	V(R) = (R/12)		EA	(acres-fee
3) DETERMINE RUNOFF VOLUM CALCULATION TABLE	E - V(R)>	-		EA	(acres-fee
,	E - V(R)	-		EA R	(acres-fee
CALCULATION TABLE	. ,	V(R) = (R / 12	2)*BASIN AR		`
CALCULATION TABLE Agency	. ,	V(R) = (R / 12	2)*BASIN AR	R	V(R)
CALCULATION TABLE	Design Storm Frequency	V(R) = (R / 12	2)*BASIN AR S (in)	R (in)	V(R)

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin B	MADE BY:	DTL	11/14/13
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	TX.P	4114113

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin B / Pond B1 - Snburban Best Fit					
Open Space - Fair Conditions	Basinger (10%)	D	. 84	0.88	73.92
Open Space - Fair Conditions	St. Johns (40%)	B/D	. 69	3.51	242.19
Open Space - Fair Conditions	Immokalee (20%)	B/D	. 69	1.76	121.44
Open Space - Fair Conditions	Pomello (10%)	С	- 79	0.88	69.52
Open Space - Fair Conditions	Felda (10%)	D	84	0.88	73.92
Open Space - Fair Conditions	Canova (10%)	B/D	69	0.88	60.72
Impervious (Paved parking, roads, etc.)			. 98	15.60	1528.80
Pond NWL			- 100	3.25	325.00
Pond pervious area	St. Johns	B/D	69	1.34	92.46
			TOTALS	· 28.98	2587.97

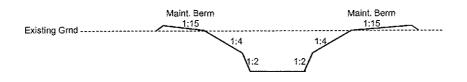
COMPOSITE CN	- 89.30

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S \sim S = (1000 / CN) - 10 (inches) $R = (P - 0.2*S)^2 / (P + 0.8*S)$ 2) DETERMINE RUNOFF - R (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE Design Storm Frequency P S R V(R) Agency (in) (in) (in) (ac-ft) SJRWMD Open Basin 3 yr / 24 hr 5.60 1.20 4.38 10.58 SJRWMD Open Basin 7.50 -1.20 6.23 15.05 10 yr / 24 hr SJRWMD Open Basin 25 yr / 24 hr 8.60 1.20 7.31 17.66

filename: Basin B1_suburban_best_fit.xls

worksheet: POST CN


URS						
MADE BY:	DTL		DATE: 13/14/13		JOB NO.	240216-4-28-l
CHECKED BY:	DEP		DATE: 04/30/14	i		
CALCULATIONS FOR:	Basin B		POND: B1		BASIN:	Basin B - Suburban Best Fit
Water Quality						
Total Basin A	rea =	28.98	aç			
Paved Area =		15.60	ac			
Pond Area at 1	NWL =	3.25	ac			
Λ,	1.0 " Over Total Basis	n Area =	=	2.42	Ac-Ft	
В.	2.5 " Over Paved Area	a≕		3,25	Ac-Ft	
Required Tre	eatment (PAV) =			3.25	Ac-Ft	
Required Att	enuation (Post - Pre) =			3.06	Ac-Ft	3yr / 24lır
Required Att	enuation (Post - Prc) =			3.47	Ac-Ft	10yr / 24hr
Required Atte	enuation (Post - Pre) =			3.64	Ac-Ft	25yr / 24lur
Required Tre	ament Vol. + Attentuation Vol	=		6.89	Ac-Ft	25yr / 24hr SJRWMD Open Basi

Stage Storage Calculations

ELEV.	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
14.00	Pond R/W (1:2 max slope tie down)	5.00				
18.00	Out Berm	4.59	4.21	1.00	4.21	14.83
17,00	Inside Berm	3.83	3,73	1,00	3.73	10.62
16.00	Provided Treatment Vol. + Attentuation Vol.	3.64	3.64	0.00	0.00	6.89
16.00	Required Treatment Vol. + Attentuation Vol.	3.64	3.62	0.16	0,58	6.89
15.84	Estimated Stormsewer Tailwater	3,61	3.52	0.87	3.06	6.31
14.97	Required Treatment Vol. (PAV)	3.44	3.34	0.97	3.25	3,25
14.00	Normal Water Level	3.25	3,31	0.57		
12.00		2.88				
6.00	Bottom	2.33				

Required Treatment Vol. + Attentuation Vol. = 6.89 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 6.89 Ac-Ft Required Treatment Vol. + Attentuation Stage = 16.00 Ft Provided Treatment Vol. + Attentuation Stage = 16.00 Ft

Required Treatment Vol. + Stormsewer Attentuation Vol. = 6.31 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 15.84 Ft

Additional 20% of Pond R/W = 6.00 ac

MADE BY: CHECKED BY:

DTL DET DATE: DATE: 11/14/13

JOB NO.

240216-4-28-1

CALCULATIONS FOR:

SR 46 PD&E

POND: B1

05/12/14 BASIN:

Basin B - Suburban Best Fit

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	15.60	0.95	14.82
Roadway Pervious Area	8.79	0.20	1.76
Pond Pervious Area	1.34	0.20	0.27
Pond Area at NWL	3.25	1.00	3.25
Total	28.98		20.10

Composite C =

0.69

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

4.75 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

7.13 ac-ft

Stage Storage Calc.

E	LEV.	AREA	AVG	Delta	Delta	Sum
	/#A)	(00)	AREA	D (#4)	storage (ac-ft)	Storage (ac-ft)
	(ft)	(ac)	(ac)	(ft)	(au-11)	(ac*11)
18.00	Out. Berm	4.59				
17.00	In. Berm	3.83				
16.00		3.64				
14.97	(PAV)	3.44				
14.00	(NWL)	3.25				21.76
			3.07	2.00	6.13	
12.00		2.88				15.63
			2.61	6.00	15.63	
6.00	Bottom	2.33				

Permanent Pool Volume Provided =

21.76 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

64.1 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.70 ft

filename: Basin B1 suburban best fit.xls worksheet: PERMANENT POOL

JRS MADE BY: CHECKED BY:	DTL DEP				: 11/14/13 : 5/12/13	JOB NO. 240216-4-28-1	
	SR 46 PD&E			POND		BASIN: Basin B - Suburban B	est F
•	<u>Hyd</u>	raulic Gra	de Line Cl	learance Calcul	ations		
1) Estimated tail	water elevation	in the pond (for <u>prelimina</u>	<u>ary</u> storm sewer des	sign) =	15.84 ft	
2) Calculation of	f post-developn	nent area for I	HGL check				
Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)		
						_	
						_	
	,						
				Tota	<u> </u>		
	Station Baseline Offset (ft) Elevation (ft)	158+15 CL46 34.50 17.30	**	el =	1.4	§]ft	
5) Pipe length fro	om Pond to low	est gutter poi	nt =	540	ft		
6) Rational Meth	od for contribut	ing runoff - Q	=CiA	7) Estimation of Pi	oe Size		
C = int. = A = Q = Manning's n = Sum K = V =	0.68 6.50 24.39 107.80 0.012 2.40 4.54	ac cfs		HL = [4.61*(n^2)*L* HL = Allowable He n = Manning's n L = Length (ft) Q = Runoff (cfs) D = Pipe diameter K = coefficient for r V = pipe velocity (ft g = gravitational co	ad Loss (ft) (ft) minor losses os)	1.24 trial <actual -="" hl="" ok<="" td=""><td></td></actual>	
8) Estimated Pip	e Diameter to s	atisfy the cor	nditions =	5.5 66	ft in		

** Please note: Seminole County Lidar data indicate elevations of the existing roadway within this basin to be approximately 14.0 ft. Thus, portions of the proposed roadway profile will need to be elevated to obtain the lowest gutter elevation used in this HGL clearance calculation.

URS						
PROJECT TITLE: SR 46 PD&E						
PROJECT NUMBER:	240216-4-28-1			DATE		
BASIN DESIGNATION:	Basin B	MADE BY:	DTL	02/20/14		
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DOF	04114114		

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin B / Pond B2 - Suburban Best Fit					
Open Space - Fair Conditions	Basinger (10%)	D	84 •	1.92	161.28
Open Space - Fair Conditions	St. Johns (40%)	B/D	69 •	7.70	531.30
Open Space - Fair Conditions	Immokalee (20%)	B/D	69 ·	3.85	265.65
Open Space - Fair Conditions	Pomello (10%)	С	79 -	1.92	151.68
Open Space - Fair Conditions	Felda (10%)	D	84 ·	1.92	161.28
Open Space - Fair Conditions	Canova (10%)	B/D	69 ·	1.92	132.48
Impervious (Paved parking, roads, etc.)			98 ·	5.16	505.68
Pond Footprint	St. Johns	B/D	69	4.58	316.02
			TOTALS	28.97	2225.37

COMPOSITE CN	- 76.82

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUN	TOLE VOLUME IS BASED ON THE						
1) DETERMINE SOIL STORAGE - S							
2) DETERMINE RUNOFF - R $\sim R = (P - 0.2*S)^2/(P + 0.8*S)$					(inches)		
		P = rainfall in	inches				
3) DETERMINE RUNOFF VOLUME - V(R)							
3) DETERMINE RUNOFF VOLUME	- V(R)>	$\mathbf{V}(\mathbf{R}) = (\mathbf{R} / 1)$	2)*BASIN AR	EA	(acres-feet)		
3) DETERMINE RUNOFF VOLUME CALCULATION TABLE	- V(R)>	$\mathbf{V}(\mathbf{R}) = (\mathbf{R} / 1)$	2)*B a SIN AR	EA	(acres-feet)		
,	- V(R)	V(R) = (R / I	2)*BASIN AR	EA R	(acres-feet)		
CALCULATION TABLE			,		, ,		
CALCULATION TABLE		P	S	R	V(R)		
CALCULATION TABLE Agency	Design Storm Frequency	P (in)	S (in)	R (in)	V(R)		
CALCULATION TABLE Agency SJRWMD Open Basin	Design Storm Frequency 3 yr / 24 hr	P (in) . 5.60	S (in) 3.02	R (in) 3.11	V(R) (ac-ft) 7.52		

worksheet: PRE CN

URS							
PROJECT TITLE:	SR 46 PD&E						
PROJECT NUMBER:	240216-4-28-1			DATE			
BASIN DESIGNATION:	Basin B	MADE BY:	DTL	02/20/14			
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	750	4/14/14			

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin B / Pond B2 - Suburban Best Fit					
Open Space - Fair Conditions	Basinger (10%)	D	84 .	0.88	73.92
Open Space - Fair Conditions	St. Johns (40%)	B/D	69 ·	3.51	242.19
Open Space - Fair Conditions	Immokalee (20%)	B/D	69 ·	1.76	121.44
Open Space - Fair Conditions	Pomelio (10%)	С	79 •	0.88	69.52
Open Space - Fair Conditions	Felda (10%)	D	84 ·	0.88	73.92
Open Space - Fair Conditions	Canova (10%)	B/D	69 -	0.88	60.72
Impervious (Paved parking, roads, etc.)			98 ·	15.60	1528.80
Pond NWL			100 ·	. 3.32	332.00
Pond pervious area	St. Johns	B/D	69 ·	1.26	86.94
			TOTALS	· 28.97	2589.45

COMPOSITE CN	· 89.38

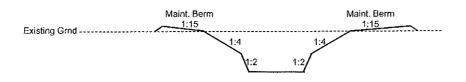
ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: I) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE S R V(R) Design Storm Frequency P Agency (in) (in) (in) (ac-ft) 1.19 4.39 10.60 SJRWMD Open Basin 3 yr / 24 hr 5.60 7.50 · 15.07 SJRWMD Open Basin 1.19 6.24 10 yr / 24 hr 25 yr / 24 hr 1.19 7.32 17.68 SJRWMD Open Basin 8.60 .

URS MADE BY: DTL DATE: 02/20/14 PROJECT NO.: 240216-4-28-1 CHECKED BY: ZP DATE: 04/20//4 SR 46 PD&E BASIN: CALCULATIONS FOR: POND: B2 Basin B Water Quality Total Basin Area = 28.97 ac Paved Area = 15.60 ac Pond Area at NWL == 3.32 ac 1.0 "Over Total Basin Area = 2.41 Ac-Ft 2.5 " Over Paved Area = 3.25 Ac-Ft Required Treatment (PAV) = 3.25 Ac-Ft Required Attenuation (Post - Pre) = 3.08 Ac-Ft 3yr / 24hr 10yr / 24hr 3.49 Ac-Ft Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) = 3.66 Ac-Ft 25yr / 24hr Required Treament Vol. + Attentuation Vol. = 6.91 Ac-Ft 25yr / 24hr SJRWMD Open Basin

6.33 Ac-Ft

3yr / 24hr closed system


Stage Storage Calculations

ELEV.	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
14.00	Pond R/W (1:2 max slope tie down)	4.97	()	(14)		
18.00	Out Berm	4.58	4.23	1.00	4,23	15.0
17.00	Inside Berm	3.87	3.78	1.00	3.78	10.79
16.00	Provided Treatment Vol. + Attentuation Vol.	3.69	3.68	0.03	0.10	7.01
15.97	Required Treatment Vol. + Attentuation Vol.	3.68	3.67	0.16	0.58	6.91
15.82	Estimated Stormsewer Tailwater	3.65	3.57	0.86	3.08	6.33
14.95	Required Treatment Vol. (PAV)	3.49	3.41	0.95	3.25	3.25
14.00	Normal Water Level	3,32		V,,, V		
12.00		2.97				
6.00	Bottom	2.46			-	

Required Treatment Vol. + Stormsewer Attentuation Vol. =

Required Treatment Vol. + Attentuation Vol. = 6.91 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 7.01 Ac-Ft Required Treatment Vol. + Attentuation Stage = 15.97 Ft Provided Treatment Vol. + Attentuation Stage = 16.00 Ft

Required Treatment Vol. + Stormsewer Attentuation Vol. = 6.33 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 15.82 Ft

Additional 20% of Pond R/W = 5.96 ac

MADE BY:

DTL

DATE:

2/20/14

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR: DEP SR 46 PD&E DATE: POND: 04/30/14

BASIN:

Basin B

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	15.60	0.95	14.82
Roadway Pervious Area	8.79	0.20	1.76
Pond Pervious Area	1.26	0.20	0.25
Pond Area at NWL	3.32	1.00	3.32
Total	28.97		20.15

Composite C =

0.70

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

4.76 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

7.14 ac-ft

Stage Storage Calc.

E	ELEV.		AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
18.00	Out, Berm	4.58				
17.00	In. Berm	3.87				
15.97		3.68		•••••		
14.95	(PAV)	3.49	-		_	
14.00	(NWL)	3.32				22.58
12.00		2.97	3.15	2.00	6.29	16.29
			2.72	6.00	16.29	
6.00	Bottom	2.46				

Permanent Pool Volume Provided =

22.58 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

66.4 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.80 ft

U _	RS MADE BY: CHECKED BY PROJECT:	DTL : DXP SR 46 PD&E				02/20/14 05/12/14 B2	PROJECT NO.: 240216-4-28- BASIN: Basin B
		<u> </u>	lydraulic G	rade Line	Clearance Calci	<u>ulations</u>	·
	1) Estimated ta	illwater elevatior	in the pond	(for <u>prelimina</u>	ary storm sewer desi	gn) =	15.82 ft
	2) Calculation	of post-developn	nent area for	HGL check			
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
							_
					Total		
							.i
		or see Post CN	i worksheet	24.39	Jac		
	3) Lowest gutte	er elevation in Ba	asin for HGL o	check			
	, -	Station	158+15	1			
	•	Baseline	CL46	- -		•	
		Offset (ft) Elevation (ft)	34.50 17.30	_			
	4) Allowable He	ead Loss = lowe	st gutter el - e	est. tailwater	el =	1.49	ft
	5) Pipe length	from Pond to low	est gutter poi	int =	780	ft	
	6) Rational Me	thod for contribu	ting runoff - C	=CiA	7) Estimation of Pip	e Size	
	C =	0.68			$HL = [4.61*(n^2)*L*(n^2)]$	(Q^2)]/(D^5.33	i) + K(V^2)/2g
	int. = A =				HL ≈ Aliowable Hea		1.45 trial
	A - Q =				n = Manning's n		<actual -="" hl="" ok<="" td=""></actual>
	Manning's n ≖	0.012			L = Length (ft) Q = Runoff (cfs)		
	Sum K = V =	2.41	fns		D = Pipe diameter (K = coefficient for m		
	V -	4.54	трз		V = pipe velocity (fp	s)	
					g = gravitational cor	nstant (32.2 ft/	sec^2)
	8) Estimated P	pe Diameter to s	satisfy the cor	nditions =	5.5	ft	
	o, Louintated i	po Diamotor to t		iaidono	66		

** Please note: Seminole County Lidar data indicate elevations of the existing roadway within this basin to be approximately 14.0 ft. Thus, portions of the proposed roadway profile will need to be elevated to obtain the lowest gutter elevation used in this HGL clearance calculation.

URS						
PROJECT TITLE:	SR 46 PD&E					
PROJECT NUMBER:	240216-4-28-1			DATE		
BASIN DESIGNATION:	Basin B	MADE BY:	DTL	02/20/14		
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	TX	4 (14/14		

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin B / Pond B3 - Suburban Best Fit					
Open Space - Fair Conditions	Basinger (10%)	D	84 .	1.92	161.28
Open Space - Fair Conditions	St. Johns (40%)	B/D	69 -	7.70	531.30
Open Space - Fair Conditions	Immokalce (20%)	B/D	69 ·	3.85	265.65
Open Space - Fair Conditions	Pomello (10%)	С	79 ·	1.92	151.68
Open Space - Fair Conditions	Felda (10%)	D	84 ·	1.92	161.28
Open Space - Fair Conditions	Canova (10%)	B/D	69 ·	1.92	132.48
Impervious (Paved parking, roads, etc.)			98 ·	5.16	505.68
Pond Footprint	St. Johns	B/D	69 -	. 4.92	339.48
			TOTALS	- 29.31	2248.83

COMPOSITE CN	· 76.73
--------------	---------

ESTIMATE OF RUNOFF VOLUME

I) DETERMINE SOIL STORAGE - S	·	S = (1000 / C)	N)-10		(inches)
$R = (P - 0.2*S)^2/(P + 0.8*S)$					
		P = rainfall in :	inches		
3) DETERMINE RUNOFF VOLUME - V(R)					
3) DETERMINE RUNOFF VOLUME - V	(R)	V(R) = (R / 12	2)*BASIN AR	EA	(acres-feet)
	(R)>	V(R) = (R / 12	2)*BASIN AR	EA	(acres-feet)
	Design Storm Frequency	V(R) = (R / 12	2)*BASIN AR	EA R	(acres-feet)
CALCULATION TABLE					
CALCULATION TABLE Agency		P	s	R	V(R)
CALCULATION TABLE	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin B	MADE BY:	DTL	02/20/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04/14/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin B / Pond B3 - Suburban Best Fit					
Open Space - Fair Conditions	Basinger (10%)	D	84 ·	0.88	73.92
Open Space - Fair Conditions	St. Johns (40%)	B/D	69 -	3.51	242.19
Open Space - Fair Conditions	Itmmokalee (20%)	B/D	69 .	1.76	121.44
Open Space - Fair Conditions	Pomeilo (10%)	С	79 ·	0.88	69.52
Open Space - Fair Conditions	Felda (10%)	D	84 ·	0.88	73.92
Open Space - Fair Conditions	Canova (10%)	B/D	69 .	0.88	60.72
Impervious (Paved parking, roads, etc.)			98 ·	15.60	1528.80
Pond NWL			100 -	3.31	331.00
Pond pervious area	St. Johns	B/D	69	1.61	111.09
			TOTALS	· 29.31	2612.60

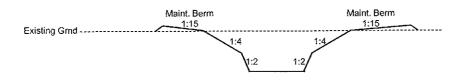
COMPOSITE CN	89.14

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rain[all in inches (acres-Feet) CALCULATION TABLE R **Design Storm Frequency** P S V(R) Agency (in) (in) (in) (ac-ft) SJRWMD Open Basin 3 yr / 24 hr 5.60 · 1.22 4.36 10.66 SJRWMD Open Basin 10 yr / 24 hr 7.50 1.22 6.21 15.17 SJRWMD Open Basin 25 yr / 24 hr 8.60 1.22 7.29 17.81

filename: Basin B3_suburban_best_fit.xls

worksheet: POST CN


URS DATE: 02/20/14 PROJECT NO.: 240216-4-28-1 MADE BY: DTL DEF DATE: 04/20/14 CHECKED BY: BASIN: CALCULATIONS FOR: SR 46 PD&E POND: B3 Basin B Water Quality Total Basin Area = 29.31 ac 15.60 ac Paved Arca = Pond Area at NWL = 3.31 ac 1.0 " Over Total Basin Area = 2.44 Ac-Ft 2.5 " Over Paved Area = 3.25 Ac-Ft Required Treatment (PAV) = 3.25 Ac-Ft Required Attenuation (Post - Pre) = 3.07 Ac-Ft 3yr / 24hr 10yr / 24hr Required Attenuation (Post - Pre) = 3.48 Ac-Ft Required Attenuation (Post - Pre) = 3.66 Ac-Ft 25yr / 24hr 6.91 Ac-Ft Required Treament Vol. + Attentuation Vol. = 25yr / 24hr SJRWMD Open Basin Required Treatment Vol. + Stormsewer Attentuation Vol. = 6.32 Ac-Ft 3yr / 24hr closed system

Stage Storage Calculations

ELEV.	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
16.50	Pond R/W (1:2 max slope tie down)	5.10	(iic)	(1.)	(
18.00	Out Berm	4.92	4,47	1.00	4.47	15.4
17.00	Inside Berm	4.01				10.9
16.00	Provided Treatment Vol. + Attentuation Vol.	3.78	3.89	0.05	0,17	7.0
15.95	Required Treatment Vol. + Attentuation Vol.	3.77	3.75	0.16	0.60	6.9
15.80	Estimated Stormsewer Tailwater	3.73	3,63	0.85	3.07	6.3
14.95	Required Treatment Vol. (PAV)	3.53	3.42	0.95	3,25	3,2
14.00	Normal Water Level	3.31	3.42	0.93		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12.00		2.85				
6.00	Bottom	2.18			H	

Required Treatment Vol. + Attentuation Vol. = 6.91 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 7.09 Ac-Ft Required Treatment Vol. + Attentuation Stage = 15.95 Ft Provided Treatment Vol. + Attentuation Stage = 16.00 Ft

Required Treatment Vol. + Stormsewer Attentuation Vol. = 6.32 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 15.80 Ft

Additional 20% of Pond R/W = 6.12 ac

MADE BY:

DTL Des

DATE:

2/20/14

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR:

SR 46 PD&E

DATE: POND: 04/30/14 B3

BASIN:

Basin B

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	15.60	0.95	14.82
Roadway Pervious Area	8.79	0.20	1.76
Pond Pervious Area	1.61	0.20	0.32
Pond Area at NWL	3.31	1.00	3.31
Total	29.31		20.21

Composite C =

0.69

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

4.78 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

7.17 ac-ft

Stage Storage Calc.

Е	ELEV.		AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
18.00	Out. Berm	4.92				
1 7 .00	In. Berm	4.01			-	
15.95		3.77	-			
14.95	(PAV)	3.53				
14.00	(NWL)	3.31				21.25
			3.08	2.00	6.16	
12.00		2.85				15.09
			2.52	6.00	15.09	
6.00	Bottom	2.18				

Permanent Pool Volume Provided =

21.25 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

62.3 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.42 ft

JRS MADE BY: CHECKED BY: PROJECT:	DTL D€₽ SR 46 PD&E				02/20/14 0≌ /≀2./ ≀4 B3	PROJECT NO.: 240216-4-28-
	<u>H</u>	lydraulic G	rade Line	Clearance Calcu	ulations	
1) Estimated tai	ilwater elevation	in the pond (for <u>prelimina</u>	ary storm sewer desi	gn) =	15.80 ft
Calculation o	f post-developn	nent area for I	HGL check			
Baseline	From Station	To Station		Roadway width (ft)	Area (ac)	
						-
			1	Total		
	or see Post CN	l worksheet	24.39	ac		
3) Lowest gutte	r elevation in Ba	ısin for HGL o	check			
	Station Baseline Offset (ft) Elevation (ft)	158+15 CL46 34.50 17.30				
4) Allowable He	ad Loss = lowe	st gutter el - e	st. tailwater	el = [1.5	<u> </u> ft
5) Pipe length fi	rom Pond to low	est gutter poi	nt =	1590	ft	
6) Rational Met	hod for contribut	ting runoff - Q	e=CiA	7) Estimation of Pip	e Size	
C = int. = A =: Q = Manning's n = Sum K = V =	6.50 24.39 107.80	ac cfs		HL = [4.61*(n^2)*L*(HL = Allowable Hea n = Manning's n L = Length (ft) Q = Runoff (cfs) D = Pipe diameter (K = coefficient for m V = pipe velocity (fp g = gravitational cor	d Loss (ft) ft) inor losses s)	1.43 trial <actual -="" hl="" ok<="" td=""></actual>
8) Estimated Pi	oe Diameter to s	satisfy the cor	nditions =	6.0 72		

** Please note: Seminole County Lidar data indicate elevations of the existing roadway within this basin to be approximately 14.0 ft. Thus, portions of the proposed roadway profile will need to be elevated to obtain the lowest gutter elevation used in this HGL clearance calculation.

WATERSHED	CHARACTERISTICS	GO ТО S	TORMWA	TER TREA	TEMENT AN	NALYSIS	Blue Numbers = Red Numbers =	Input data Calculated or Carryover
SELECT CATC	HMENT CONFIGURATION	CLICK ON CE		V TO SELEC		RATION	VIEW CATCHMENT	CONFIGURATION
CATCHMENT NO.1 CHARAC	TERISTICS:	\	***************************************		e calculatio	n)	OVERWRITE DEFAULT COM	CENTRATIONS USING:
Pre-development land use: with default EMCs	CLICK ON CELL BELOW TO SEL Single-Family: TN=2.070 TP=0.3 CLICK ON CELL BELOW TO SEL	327	Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
Post-development land use:	Highway: TN=1.640 TP=0.220)	7.1.1				CLICK ON CELL BEL	OW TO SELECT.
with default EMCs Total pre-development catchm Total post-development catchr		28.98 28.98	AC				USE DEFAULT CON	
Pre-development Non DCIA C Pre-development DCIA percer Post-development Non OCIA (ntage:	76.81 0.00 79.16	%		Pre-develop	oment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus:	27.923 kg/year 4.411 kg/year
Post-development DCIA perce	ntage: for rainfall excess not loadings)	53.83 4.59					Mass Loading - Nitrogen: Mass Loading - Phosphorus:	99.560 kg/year 13.356 kg/year
CATCHMENT NO.2 CHARAC		***************************************		d uses (sid	e calculatio		OVERWRITE DEFAULT	
Pre-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
Post-development land use:			Totai				CLICK ON CELL BEL	OW TO SELECT:
Total pre-development catchm Total post-development catchr	nent or BMP analysis area:		AC AC				USE DEFAULT CON	ICENTRATIONS
Pre-development Non OCIA C Pre-development DCIA percer Post-development DCIA percer Cating Appendix DCIA percer	ntage: CN:		% % AC		Pre-develor Post-develo	pment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus: al Mass Loading - Nitrogen: al Mass Loading - Phosphorus:	kg/year kg/year kg/year kg/year
CATCHMENT NO.3 CHARAC		\ If		d uses (sid	le calculation		OVERWRITE DEFAULT	
Pre-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L
Post-development land use:			Total				CLICK ON CELL BEL	OW TO SELECT:
Total pre-development catchm Total post-development catchr Pre-development Non DCIA C	nent or BMP analysis area:		AC AC				USE DEFAULT CON	CENTRATIONS
Pre-development DCIA percer Post-development Non DCIA (Post-development DCIA perce	ntage: CN:		% % AC		Pre-develor Post-develo	pment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus: al Mass Loading - Nitrogen: al Mass Loading - Phosphorus:	kg/year kg/year kg/year kg/year
CATCHMENT NO.4 CHARAC	TERISTICS:	\ If	mixed lar	ıd uses (sid	le calculation	on)	OVERWRITE DEFAULT	CONCENTRATIONS:
Pre-development land use:	CLICK ON CELL BELOW TO SEL	ECT.	Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L	POST:
Post-development land use:	CLICK ON CELL BELOW TO SEL	ECT					EMC(P):mg/L	mg/L
Total pre-development catchm	ent area:		Total AC				CLICK ON CELL BEL	
Total post-development catchr Pre-development Non DCIA C	ment or BMP analysis area: N:		AC				USE DEFAULT CON	
Pre-development DCIA percer Post-development Non DCIA (Post-development DCIA perce Estimated Area of BMP (used	ON:		% % AC		Pre-develor Post-develor	pment Annual opment Annua	Mass Loading - Nitrogen: Mass Loading - Phosphorus: Mass Loading - Nitrogen: Mass Loading - Phosphorus:	kg/year kg/year kg/year kg/year

Basin B	Catchment 2 Catchment 4 0.000 0.000 0.000 ac 0.000 0.000 ac No No No No No No No No No N	71 0.00 0.00 ft 31 0.000 0.000 0.000 ac-ft Efficiency Curve (P) System Efficiency (P) EFFICIENCY GRAPH: CAT 1 System Efficiency (P) The purpose of the treatment efficiency CAT 3 System Efficiency (P) The purpose of the treatment efficiency (P) CAT 3 System Efficiency (P) The purpose of the treatment efficiency (P) CAT 4 The function of average annual residence time (and permanent pool volume). The time (and permanent pool volume). The graph illustrates that there is a point of diminished return as the permanent pool volume). The graph illustrates that there is a point of diminished return as the permanent pool volume. System Efficiency (N) CAT 1 volume is substantially increased. Therefore, to provide the most economical BMP treatment system, other alternatives such as "treatment System, other alternatives such as "treatment can be conomical BMP treatment system, other alternatives such as "treatment trains" and compensatory treatment
WEI DETENTION:	Catchment 1 Catc	10.71 0.00 8.631 0.00 8.631 0.00 8.631 0.00
WET DETENTION POND SERVING:	Total pre-development catchment area: Total post-development catchment area: Average annual residence time (between 1 and 500 days): Littoral Zone used in the design: Littoral Zone efficiency credit (user specifies 10, 15, or 20%): Total Nitrogen removal required: Total Phosphorus removal efficiency provided: Total Phosphorous removal efficiency provided: Is the wet detention sufficient: Wet Detention Pond Characteristics:	Permanent Pool Depth: Minimum Permanent Pool Volume: 100 90 70 70 100 Treatment Efficiency (%): 10 10 10

Blue Numbers = Calculated or Carryover Red Numbers = Calculated or Carryover
REQUIRED REMAINING TREATMENT EFFICIENCIES OF TREATMENT SYSTEM IN SERIES WITH WET
Remaining treatment efficiency needed (Nitrogen): 52.506
FREEDOARD BETWEEN EOE AND TOB FREEDOARD BETWEEN EOE AND TOB FREEDOARD CONTROL ATTENDATION VOLUME - IF APPLICABLE TOP OF FLOOD CONTROL ATTENDATION VOLUME (BDV) SHEWT GANTER SIDE SLOPE OPTIONAL LITTORAL ZONE WITH A 4:1 (H TO V) ON SHEWT SHEWT SHEWT SHEWT SHEWT STATE SIDE SLOPE OPTIONAL LITTORAL LOS WITH A 4:1 (H TO V) ON FLATTER SIDE SLOPE OPTIONAL LITTORAL LOS WITH A 4:1 (H TO V) ON SHEWT SHEWT
Source of Graphic: draft STORMWATER QUALITY APPLICANT'S HANDBOOK dated March 2010, by the Department of Environmental Protection, available at: http://www.dep.state.fl.us/water/wetlands/erp/rules/stormwater, March 2010

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin C	MADE BY:	CJH	11/13/2013
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	Des	4/14/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin C / Pond C1 - Suburban Best Fit					
Open Space - Fair Conditions	Pomello (50%)	С	79 ،	6.64	524.56
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 .	1.33	91.77
Open Space - Fair Conditions	St. Johns (30%)	B/D	69 .	3.98	274.62
Open Space - Fair Conditions	Basinger (10%)	D	84 .	1.33	111.72
Impervious (Paved parking, roads, etc.)			98	3.74	366.52
Pond footprint	St. Johns	B/D	69 ·	3.33	229.77
			TOTALS	20.35	1598.96

COMPOSITE CN	· 78.57

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RU	NOFF VOLUME IS BASED ON THE	SCS EQUATE	on and is a	s Follows	
I) DETERMINE SOIL STORAGE - S	}	S = (1000 / C	N)-10		(inches)
2) DETERMINE RUNOFF - R	>	$R = (P *0.2*S)^2 / (P + 0.8*S)$			
		P = rainfall in	inches		
3) DETERMINE RUNOFF VOLUME	E - V(R)>	V(R) = (R/1)	(acres-feet)		
CALCULATION TABLE					
Agency	Design Storm Frequency	P	s	R	V(R)
5 ,		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60	2.73	3.28	5.57
SJRWMD Open Basin	10 yr / 24 hr	7.50	2.73	5.00	8.47
SJRWMD Open Basin	25 yr / 24 hr	8.60	2.73	6.02	10.20
Out will open bushi					10.20
FDOT Critical Duration	100 yr / 72 hr	13.60	2.73	10.80	18.31

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin C	MADE BY:	СЈН	11/13/2013
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	11/4/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin C / Pond C1 - Suburban Best Fit					
Open Space - Fair Conditions	Pomelio (50%)	С	79 .	2.96	233.84
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 -	0.59	40.71
Open Space - Fair Conditions	St. Johns (30%)	B/D	69 ·	1.78	122.82
Open Space - Fair Conditions	Basinger (10%)	D .	84 ·	0.59	49.56
Impervious (Paved parking, roads, etc.)			98 -	11.10	1087.80
Pond NWL			100 .	2.45	245.00
Pond pervious area	St. Johns	B/D	69 .	0.88	60.72
			TOTALS	20.35	1840.45

COMPOSITE CN	90,44

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUN	OFF VOLUME IS BASED ON THE	e scs equati	on and is a	S FOLLOWS	:	
1) DETERMINE SOIL STORAGE - S	>	S = (1000/C	N)-10		(inches)	
2) DETERMINE RUNOFF - R	>	$R = (P - 0.2*S)^2 / (P + 0.8*S)$			(inches)	
		P = rainfall in	inches			
3) DETERMINE RUNOFF VOLUME	- V(R)>	V(R) = (R/1)	2)*B A SIN AR	EA	(acres-feet)	
CALCULATION TABLE						
Agency	Design Storm Frequency	P	S	R	V(R)	
		(in)	(in)	(in)	(ac-ft)	
SJRWMD Open Basin	3 yr / 24 hr	5.60	1.06	4.50	7.64	
SJRWMD Open Basin	10 yr / 24 hr	7.50	1.06	6.37	10.79	
SJRWMD Open Basin	25 yr / 24 hr	8.60 ·	1.06	7.45	12.63	
FDOT Critical Duration	100 yr / 72 hr	13.60 ·	1.06	12.41	21.04	

URS				
MADE BY:	CJH			JECT NO.: 240216-4-28-1
CHECKED BY:	ie?	DATE:	04/30/14	
CALCULATIONS FOR:	SR 46 PD&E	POND:	Cl	BASIN: Basin C
Water Quality				
Total Basin Ar	rca =	20.35 ac		
Paved Area =		11.10 ac		
Pond Area at I	NWL=	2.45 ac		
Α.	1.0 " Over Total Basi	n Area =	1.70 Ac-Ft	
В.	2.5 "Over Paved Are		2.31 Ac-Ft	
- ·	eatment (PAV) =		2.31 Ac-Ft	
Required Att	enuation (Post - Pre) =		2.07 Ac-Ft	3yr / 24hr
-	enuation (Post - Pre) =		2.32 Ac-Ft	10yr / 24hr
•	enuation (Post - Pre) =		2.43 Ac-Ft	25yr / 24hr
-	enuation (Post - Pre) =		2.73 Ac-Ft	100yr/ 72hr
Paguired Tre	eament Vol. + Attentuation Vol. =		5.04 Ac-Ft	100yr/ 72hr FDOT Critical Durati
Ixedunea 11e	Ament vol. Attendation vol		3.0 11.0 11	100311 1211 1201 01111011 22111
Described To	eatment Vol. + Stormsewer Attenti	nation Vol =	4.38 Ac-Ft	3yr / 24hr closed system

Stage Storage Calculations

ELEV. (ft)	Description	AREA (ac)	AVG AREA (ae)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
16.00	Pond R/W (1:2 max slope tie down)	3.40				
17.00	Out Berm	3.33	3.08	1.00	3.08	11.00
16.00	Inside Berm	2.83	2.77	1.00	2,77	7.92
15.00	Provided Treatment Vol. + Attentuation Vol.	2.70	2.70	0.04	0,12	5.15
14.96	Required Treatment Vol. + Attentuation Vol.	2.70	2.68	0.24	0.65	5.04
14.71	Estimated Stormsewer Tailwater	2,67	2.62	0.79	2.07	4.38
13.92	Required Treatment Vol. (PAV)	2.57	2.51	0.92	2.31	2,31
13.00	Normal Water Level	2.45	2.51	0.72	2.31	
11.00		2,21				
5.00	Bottom	1.87			-	

Required Treatment Vol. + Attentuation Vol. = 5.04 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 6.15 Ac-Ft Required Treatment Vol. + Attentuation Stage = 14.96 Ft Provided Treatment Vol. + Attentuation Stage = 15.00 Ft (1 Ft freeboard)

Required Treatment Vol. + Stormsewer Attentuation Vol. = 4.38 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 14.71 Ft

MADE BY:

CJH

DATE: 11/14/2013

PROJECT NO.: 240216-4-28-1

CHECKED BY:

DEP

SR 46 PD&E

DATE: 01/20/14 POND: C1

BASIN: Basin C

Permanent Pool Calculations

Basin Characteristics

CALCULATIONS FOR:

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	11.10	0.95	10.55
Roadway Pervious Area	5.92	0.20	1.18
Pond Pervious Area	0.88	0.20	0.18
Pond Area at NWL	2.45	1.00	2.45
Total	20.35		14.36

Composite C =

0.71

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

3.39 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

5.09 ac-ft

Stage Storage Calc.

EI	LEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
17.00	Out. Berm	3.33				
16.00	In. Berm	2.83	*			
14.96		2.70		·		
13.92	(PAV)	2,57				
13.00	(NWL)	2.45			•	16.90
			2.33	2.00	4.66	
11.00		2.21				12,24
		•	2.04	6.00	12.24	
5.00	Bottom	1.87				

Permanent Pool Volume Provided =

16.90 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

69.7 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.90 ft

filename: Basin C1_suburban_best_fit.xls worksheet: PERMANENT POOL

URS						
MADE BY: CHECKED BY	CJH				11/14/2013 05/12/14	PROJECT NO.: 240216-4-28-1
PROJECT:	SR 46 PD&E			POND:		BASIN: Basin C
		Hvdraulic G	Frade Line	e Clearance Calc	ulations	
1) Estimated t	ailwater elevatio	in the pond	(for <u>prelimir</u>	nary storm sewer des	sign) ≂	14.71 ft
2) Calculation	of post-develop	ment area for	HGL check			
Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
						_
/	***************************************	·		Total		
	or see Post Ch	N worksheet	17.02	ac		
				•		
3) Lowest gutt	er elevation in E	asin for HGL	check			
	Station	226+60	1			
	Baseline	CL46				•
	Offset (ft) Elevation (ft)	34.50 16.30				
	Lie valloir (ity	10.00	l			
4) Allowable H	ead Loss = low	est gutter el -	est. tailwate	rel = [1.59	9]ft
		-		900		~
5) Pipe length	from Pond to lo	west gutter po	oint =	900	π	
6) Rational Me	thod for contrib	uting runoff - (Q=CiA	7) Estimation of Pipe	e Size	
C =	0.69			HL = [4.61*(n^2)*L*((Q^2)]/(D^5.33	3) + K(V^2)/2g
int. = A =	6.50 17.02			HL = Allowable Hea	dloss (ff)	1.22 trial
Λ- Q≂	76.33			n = Manning's n	u 2033 (II)	<actual -="" hl="" ok<="" td=""></actual>
B.A to to	0.040	· [L = Length (ft)		
Manning's n ≕ Sum K =	0.012 2.42			Q = Runoff (cfs) D = Pipe diameter (f	ft\	
V =	3.89	fps		K = coefficient for m		
				V = pipe velocity (fp		
				g = gravitational con	stant (32.2 ft/	sec^2)
0) F // / L F	· D:		10.0	F 61		
8) Estimated F	ipe Diameter to	satisty the co	naitions =	5.0 60		
			'			

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin C	MADE BY:	DTL	02/20/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	THE	01514

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin C / Pond C2 - Suburban Best Fit					
Open Space - Fair Conditions	Pomeilo (50%)	С	79 .	6.64	524.56
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 .	1.33	91.77
Open Space - Fair Conditions	St. Johns (30%)	B/D	69 .	3.98	274.62
Open Space - Fair Conditions	Basinger (10%)	D	84 .	1.33	111.72
Impervious (Pavcd parking, roads, etc.)			98 .	3.74	366.52
Pond footprint	St. Johns	B/D	69	3.33	229.77
			TOTALS	20.35	1598.96

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUN					
1) DETERMINE SOIL STORAGE - S	>	S = (1000 / C)	1)-10		(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S))^2/(P+0.8	*S)	(inches)
		P = rainfall in i	nches		
3) DETERMINE RUNOFF VOLUME	- V(R)>	$\mathbf{V}(\mathbf{R}) = (\mathbf{R} / 12$)*BASIN AR	EA	(acres-fect
3) DETERMINE RUNOFF VOLUME CALCULATION TABLE	- V(R)	V(R) = (R / 12))*BASIN AR	EA	(acres-fect
CALCULATION TABLE		V(R) = (R / 12)*BASIN AR	EA R	(acres-feet
,	Design Storm Frequency	, , ,	,	y	,
CALCULATION TABLE Agency		P	s	R	V(R)
CALCULATION TABLE Agency SJRWMD Open Basin	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)
CALCULATION TABLE	Design Storm Frequency 3 yr/24 hr	P (in) 5.60	S (in) 2.73	R (in) 3.28	V(R) (ac-ft) 5.57

filename: Basin C2_suburban_best_fit.xls

worksheet: PRE CN

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin C	MADE BY:	DTL	02/20/14
BASIN ANALYSIS (PRE/POST):	POST	СНЕСКЕД ВУ:	DEP	61/15/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin C / Pond C2 - Suburban Best Fit					
Open Space - Fair Conditions	Pomeilo (50%)	С	79 -	2.96	233.84
Open Space - Fair Conditions	Immokalee (10%)	B/D	69	0.59	40.71
Open Space - Fair Conditions	St. Johns (30%)	B/D	69	1.78	122.82
Open Space - Fair Conditions	Basinger (10%)	D	84	0.59	49.56
Impervious (Paved parking, roads, etc.)			98	11.10	1087.80
Pond NWL			100	2.45	245.00
Pond pervious area	St. Johns	B/D	69 -	0.88	60.72
			TOTALS	20.35	1840.45

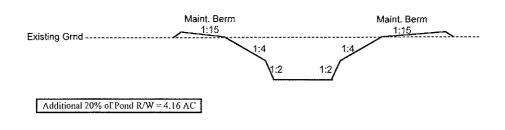
COMPOSITE CN	90.44

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNC	FF VOLUME IS BASED ON THE	SCS EQUATION	ON AND IS A	S FOLLOWS	•
THOOLEGIE TO DETERMINE ROTTO		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9111 1 (1- 1- 1-		
1) DETERMINE SOIL STORAGE - S		S = (1000 / C)	N)-10		(inches)
2) DETERMINE RUNOFF - R	>	$R = (P - 0.2*S)^2 / (P + 0.8*S)$			(inches)
		P = rainfall in	inches		
3) DETERMINE RUNOFF VOLUME - `	V(R)>	V(R) = (R/12	2)*BASIN AR	EA	(acres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
		(:-)	(in)	(in)	
- Agency		(in)	(111)	(1)47	(ac-ft)
	3 yr / 24 hr	5.60	1.06	4.50	(ac-ft) 7.64
SJRWMD Open Basin	3 yr / 24 hr 10 yr / 24 hr				
SJRWMD Open Basin SJRWMD Open Basin SJRWMD Open Basin		5.60	1.06	4.50	7.64

filename: Basin C2_suburban_best_fit.xls

worksheet: POST CN


URS						
MADE BY:	DTL		DATE:	02/20/14	PROJECT NO.:	240216-4-28-1
CHECKED BY:	DE Los		DATE:	04/30/14		
CALCULATIONS FOR:	SR 46 PD&E		POND:	C2	BAŞIN:	: Basin C
Water Quality						
Total Basin Arca =	,	20.35 ac				
Paved Area =		11.10 ac				
Pond Area at NWL	.==	2.45 ac				
Α.	1.0 " Over Total B	asin Area =		1.70 A	.c-Ft	
B.	2.5 "Over Paved A	Area ≔		2.31 A	.c-Ift	
Required Treatme	nt (PAV) =		[2.31 A	.c-Ft	
Required Attenuat	tion (Post - Pre) =		ſ	2.07 A	.c-Ft	3yr/24hr
Required Attenuat	tion (Post - Pre) =		i	2.32 A	.c-Ft	10yr / 24hr
Required Attenuat	tion (Post - Pre) =		[2.43 A	.c-Ft	25yr / 24hr
Required Attenuat	tion (Post - Pre) =		[2.73 A	.c-Ft	100yr/ 72hr
Required Treamer	nt Vol. + Attentuation Vol.	=		5.04 A	.c-Ft	100yr/ 72hr FDOT Critical Dura
Desired Testing	ent Vol. + Stormsewer Atte	ntuation Vol -		4.38 A	o-Ft	3yr / 24hr closed system

Stage Storage Calculations

ELEV. (ft)	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
15.00	Pond R/W (1:2 max slope tie down)	3.47				
17.00	Out Berm	3.33	3.08	1,00	3.08	11.00
16.00	Inside Berm	2.83	2.77	1.00	2.77	7.92
15.00	Provided Treatment Vol. + Attentuation Vol.	2.70	2.70	0.04	0.12	5.15
14.96	Required Treatment Vol. + Attentuation Vol.	2.70	2.68	0.24	0.65	5.04
14.71	Estimated Stormsewer Tailwater	2.67	2.62	0.79	2.07	4.38
13.92	Required Treatment Vol. (PAV)	2.57	2.51	0.92	2.31	2.31
13.00	Normal Water Level	2.45		·····		
11.00		2.21	.			
5.00	Bottom	1.86				

Required Treatment Vol. + Attentuation Vol. = 5.04 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 5.15 Ac-Ft Required Treatment Vol. + Attentuation Stage = 15.00 Ft (1 Ft freeboard)

Required Treatment Vol. + Stormsewer Attentuation Vol. = 4.38 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 14.71 Ft

filename: Basin C2_suburban_best_fit.xls worksheet: POND CALC.

MADE BY:

DTL

DATE: 02/20/14

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR:

DOP SR 46 PD&E DATE: 34(20)11十 POND: C2

BASIN: Basin C

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	11.10	0.95	10.55
Roadway Pervious Area	5.92	0.20	1.18
Pond Pervious Area	0.88	0.20	0.18
Pond Area at NWL	2.45	1.00	2.45
Total	20.35		14.36

Composite C =

0.71

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

3.39 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

5.09 ac-ft

Stage Storage Calc.

E	LEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
17.00	Out. Berm	3.33				
16.00	In. Berm	2.83				
14.96		2.70				
13.92	(PAV)	2.57	-			
13.00	(NWL)	2.45				16.87
			2.33	2.00	4.66	
11.00		2.21				12.21
			2.04	6.00	12.21	
5.00	Bottom	1.86	1			

Permanent Pool Volume Provided =

16.87 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

69.6 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.89 ft

filename: Basin C2_suburban_best_fit.xls worksheet: PERMANENT POOL

Ľ	JRS						
	MADE BY:	DTL Y: Not?				11/14/2013 04/30/14	PROJECT NO.: 240216-4-28-1
	PROJECT:	SR 46 PD&E			POND:		BASIN: Basin C
		<u> </u>	Hydraulic (arade Line	e Clearance Cald	ulations	
	4) Estimatad		•				+4.71
	1) Estimated t	allwater elevatio	n in the pond	(for prelimit	nary storm sewer des	sign) =	14.71 ft
	2) Calculation	of post-develop	ment area for	HGL check			
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
							-
							_[
	L			!	Total		
		or see Post CN	J worksheet	17.02	Jac		
		0,000,000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J 22		
	3) Lowest aut	ter elevation in B	Basin for HGI	check			
	0) 20 // 30 (gal.			,			
		Station Baseline	226+60 CL46	_			
		Offset (ft)	34.50]			
		Elevation (ft)	16.30				
						,	-
	4) Allowable H	lead Loss = low	est gutter el -	est. tailwate	er el =	1.5	9 ft
	5) Pipe length	from Pond to lo	west gutter po	oint =	400	ft	
	6) Bational Me	ethod for contribu	itina runoff -	D=CiA	7) Estimation of Pip	e Size	
	o) Hallonai wi	3(1100 101 CO11()1D(aking ranon) Louination of 1 sp	COILO	
	C = int. =		in/hr		$HL = [4.61*(n^2)*L*]$	(Q^2)]/(D^5.3	3) + K(V^2)/2g
	nn A =				HL = Allowable Hea	ıd Loss (ft)	1.36 trial
	Q =	76.33	cfs		n = Manning's n		<actual -="" hl="" ok<="" td=""></actual>
	Manning's n =	0.012			L = Length (ft) Q = Runoff (cfs)		
	Sum K =				D = Pipe diameter (ft)	
	V =		fps		K = coefficient for m		
					V = pipe velocity (fp		
					g = gravitational cor	nstant (32.2 ft	/sec^2)
				154			
	8) Estimated F	Pipe Diameter to	satisty the co	naitions =	4.5 54		

URS								
PROJECT TITLE:								
PROJECT NUMBER:	240216-4-28-1			DATE				
BASIN DESIGNATION:	Basin C	MADE BY:	DTL	02/25/14				
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/18/14				

·	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin C / Pond C3 - Suburban Best Fit					٧
Open Space - Fair Conditions	Pomello (50%)	С	79	6.64	524.56
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 -	1.33	91.77
Open Space - Fair Conditions	St. Johns (30%)	B/D	69 .	3.98	274.62
Open Space - Fair Conditions	Basinger (10%)	D	84	1.33	111.72
Impervious (Paved parking, roads, etc.)			98 ·	3.74	366.52
Pond footprint	St. Johns	B/D	69 .	3.34	230.46
		,	TOTALS	. 20.36	1599.65

COMPOSITE CN	- 78.57

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUI	NOFF VOLUME IS BASED ON THE	SCS EQUATIO	N AND IS A	S FOLLOWS:				
1) DETERMINE SOIL STORAGE - S		S = (1000 / Ch		(inches)				
2) DETERMINE RUNOFF - R	>	$R = (P - 0.2*S)^2 / (P + 0.8*S)$ (in						
		P = rainfall in i	nches					
3) DETERMINE RUNOFF VOLUME - V(R)								
5) DETERMINE ROTTOR TOSOMA	- V(K)	V(K) - (K/12). PHOIN WI	GA.	(acres-reer)			
,	, • v(k)	V(K) (K / 12). PYSIIA YIK	БA.	(acres-teer)			
CALCULATION TABLE	``	P	S BASIN AIC	R	V(R)			
,	Design Storm Frequency			,	, , , , , , , , , , , , , , , , , , ,			
CALCULATION TABLE Agency	``	P	s	R	V(R)			
CALCULATION TABLE Agency SJRWMD Open Basin	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)			
CALCULATION TABLE	Design Storm Frequency 3 yr / 24 hr	P (in) 5.60 ·	S (in) 2.73	R (in) 3.28	V(R) (ac-ft) 5.57			

worksheet: PRE CN

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin C	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	TXP	01(18)14

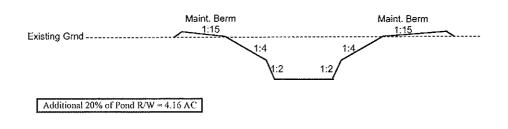
	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin C / Pond C3 - Suburban Best Fit					
Open Space - Fair Conditions	Pomello (50%)	С	79 ·	2.96	233.84
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 .	0.59	40.71
Open Space - Fair Conditions	St. Johns (30%)	B/D	69 ·	1.78	122.82
Open Space - Fair Conditions	Basinger (10%)	D	84 -	0.59	49.56
Impervious (Paved parking, roads, etc.)			98 .	11.10	1087.80
Pond NWL			100 /	2.47	247.00
Pond pervious area	St. Johns	B/D	69 -	0.87	60.03
	**************************************		TOTALS	20.36	1841.76

COMPOSITE CN	. 90.46
--------------	---------

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS:								
1) DETERMINE SOIL STORAGE - S	>	S = (1000 / CN	l) - 10		(inches)			
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S))^2 / (P + 0.8	*S)	(inches)			
		P = rainfall in i	nches					
3) DETERMINE RUNOFF VOLUME	- V(R)	V(R) = (R/12)*BASIN AR	EA	(acres-feet			
,	- V(R)>	V(R) = (R/12)*BASIN AR	EA	(acres-feet			
CALCULATION TABLE	Design Storm Frequency	V(R) = (R/12)*BASIN AR	EA R	(acres-feet			
,								
CALCULATION TABLE Agency		P	s	R	V(R)			
CALCULATION TABLE Agency SJRWMD Open Basin	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)			
CALCULATION TABLE	Design Storm Frequency 3 yr/24 hr	P (in) 5.60	S (in) 1.05	R (in) 4.51	V(R) (ac-ft) 7.65			

worksheet: POST CN


URS						
MADE BY:		DTL	DATE:	02/25/14 PR	OJECT NO.:	: 240216-4-28-1
CHECKED BY:		Dep	DATE:	04/30/14		
CALCULATIONS FOR:		SR 46 PD&E	POND:	Ć3 , , ,	BASIN	: Basin C
Water Quality						
Total Basin Area	==	20.36 ac				
Paved Area =		11.10 ac				
Pond Area at NV	/L=	2.47 ac				
Α.	1.0	" Over Total Basin Area =		1,70 Ac-F	;	
В.	2.5	" Over Paved Area =	_	2.31 Ac-F		
Required Treat	nent (PAV) =		[2.31 Ac-F		
Required Atten	ıation (Post - P	're) =		2.08 Ac-F	!	3yr / 24hr
Required Atten	tation (Post - P	're) =	[2.33 Ac-F	:	10yr / 24hr
Required Atten	ıation (Post - P	're) =		2.44 Ac-F		25yr / 24hr
Required Atten	iation (Post - P	're) =	[2.74 Ac-F	:	100yr/ 72hr
Required Tream	ent Vol. + Atte	entuation Vol. =		5.05 Ac-F	:	100yr/ 72hr FDOT Critical Dura
Paguired Treet	nent Vol. + Sta	ormsewer Attentuation Vol.		4.39 Ac-F		3yr / 24hr closed system

Stage Storage Calculations

ELEV. (ft)	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
15.00	Pond R/W (1:2 max slope tie down)	3.47				
17.00	Out Berm	3.34	3.09	1.00	3.09	11.06
16.00	Inside Berm	2.84	2.78	1.00	2.78	7.97
15.00	Provided Treatment Vol. + Attentuation Vol.	2.72	2.71	0.05	0.14	5.19
14.95	Required Treatment Vol. + Attentuation Vol.	2.71	2.70	0.25	0.66	5.05
14.70	Estimated Stormsewer Tailwater	2.68	2.63	0.79	2.08	4.39
13.91	Required Treatment Vol. (PAV)	2.58	2.53	0,91	2,31	2.31
13.00	Normal Water Level	2.47	2.55	0.51	2,71	
11,00		2.23				
5.00	Bottom	1.90				

Required Treatment Vol. + Attentuation Vol. = 5.05 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 5.19 Ac-Ft Required Treatment Vol. + Attentuation Stage = 14.95 Ft Provided Treatment Vol. + Attentuation Stage = 15.00 Ft (1 Ft freeboard)

Required Treatment Vol. + Stormsewer Attentuation Vol. = 4.39 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 14.70 Ft

MADE BY:

DTL

DATE: 02/25/14

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR: DEP SR 46 PD&E DATE: 04/30/14 POND: C3

BASIN: Basin C

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	11.10	0.95	10.55
Roadway Pervious Area	5.92	0.20	1.18
Pond Pervious Area	0.87	0.20	0.17
Pond Area at NWL	2.47	1.00	2.47
Total	20.36		14.37

Composite C =

0.71

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

3.40 ac-ft

Min. Permanent Pool Vol. Reg. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

5.10 ac-ft

Stage Storage Calc.

Е	ELEV.		ELEV.		AVG AREA	Delta D	Deita storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)		
17.00	Out. Berm	3.34						
16.00	In. Berm	2.84			·			
14.95		2.71						
13.91	(PAV)	2.58						
13.00	(NWL)	2.47				17.09		
			2.35	2. 0 0	4.70			
11.00		2.23				12.39		
			2.07	6.00	12.39			
5.00	Bottom	1.90	1					

Permanent Pool Volume Provided =

17.09 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

70.4 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.92 ft

filename: Basin C3_suburban_best_fit.xls worksheet: PERMANENT POOL

U	IRS						BBO ISOT NO. Avenue view
	MADE BY: DTL CHECKED BY: كَالَّا CHECKED BY:					02/25/14 04 (30/14	PROJECT NO.: 240216-4-28-1
	PROJECT:	SR 46 PD&E			POND:	C3	BASIN: Basin C
			Judraulia (erada Lin	o Cloaranco Calc	vulatione	
		<u>.</u>	nyuraunc (arage Line	e Clearance Calc	ulations	
	1) Estimated t	ailwater elevatio	n in the pond	(for <u>prelimi</u>	nary storm sewer des	sign) =	14.70 ft
	_, _ , , ,						
	2) Calculation	of post-develop	ment area for	HGL check	(
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
							_
					Total		
					-		l
		or see Post CN	l worksheet	17.02	ac		
	3) Lowest gutt	er elevation in E	asin for HGL	check			
		Station	226+60	1			
		Baseline	CL46				
Offset (ft) 34.50							
		Elevation (ft)	16.30	J			
							- -
	4) Allowable H	lead Loss = low	est gutter el -	est. tailwate	er el =	1.6	o]ft
	5) Pipe length	from Pond to lo	west gutter po	oint =	100	ft	
				o o: •	->	. 0:	
	6) Hational Me	ethod for contrib	uting runoff - (J≕CiA	7) Estimation of Pip	e Size	
	C =				HL = [4.61*(n^2)*L*	(Q^2)]/(D^5.3	3) + K(V^2)/2g
	int. =				HI — Allowable He	nd Lose (ft)	1.60 trial
	A == Q =	17.02 76.33			HL = Allowable Hean = Manning's n	au 2055 (II)	<actual -="" hl="" ok<="" td=""></actual>
			•		L = Length (ft)		
Manning's n = 0.012 Sum K = 2.37					Q = Runoff (cfs) D = Pipe diameter ('#\	
	Sum K = V =	6.07	fps		K = coefficient for m	•	
		<u> </u>	'		V = pipe velocity (fr	os)	
					g = gravitational co	nstant (32.2 ft	/sec^2)
	8) Estimated F	ipe Diameter to	satisfy the co	nditions =	4.0		
					48	Jin	

WATERSHED CHARACTERISTICS		GO TO STORMWATER TREATEMENT ANALYSIS				NALYSIS	Blue Numbers = Red Numbers =	input data Calculated or Carryover
SELECT CATC	HMENT CONFIGURATION	CLICK ON CE			CT CONFIGU hment	POWER TO A PROFILE TO A PORT OF THE PART O	VIEW CATCHMEN	T CONFIGURATION
CATCHMENT NO.1 CHARAC	TERISTICS:	1	1		side calcul		OVERWRITE DEFAULT (CONCENTRATIONS USING:
Pre-development land use: with default EMCs	CLICK ON CELL BELOW TO SEL Jndeveloped //Rangoland //Forest_TN=1 CLICK ON CELL BELOW TO SEL Highway, TN=1,640 TP=0.22	.150 TP=0.51 .ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
Post-development land use: with default EMCs	Fighway 114-11040 17-0224	1	Total				CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchin Total post-development catch Pre-development Non DCIA C	ment or BMP analysis area:	20.35 20.35 78.57	AC				USE DEFAULT O	CONCENTRATIONS
Pre-development DCIA percei Post-development Non DCIA Post-development DCIA percei	ntage: CN:	0:00 81:37 54:54 3:33	% %		Pre-develo Post-develo	pment Annua	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus al Mass Loading - Nitrogen: al Mass Loading - Phosphoru	71.413 kg/year
CATCHMENT NO.2 CHARAC		١	if mixed is	and uses (side calcul:		OVERWRITE DEFAU	LT CONCENTRATIONS:
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L
			Total				CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchn Total post-development catch Pre-development Non DCIA C	ment or BMP analysis area: :N:		AC AC			·		CONCENTRATIONS
Pre-development DCIA percel Post-development Non DCIA Post-development DCIA percel Estimated Area of BMP (used	CN:		% % AC		Pre-develo Post-develo	pment Annua	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus al Mass Loading - Nitrogen: al Mass Loading - Phosphoru	kg/year
CATCHMENT NO.3 CHARAC		1	lf mixed	land uses	(side calcul	lation)	OVERWRITE DEFAUI	LT CONCENTRATIONS:
Pre-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
Post-development land use:			Total				CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchin Total post-development catch	ment or BMP analysis area:		AC AC				USE DEFAULT O	CONCENTRATIONS
Pre-development Non DCIA C Pre-development DCIA percel Post-development Non DCIA Post-development DCIA percel Estimated Area of BMP (used	ntage: CN:		% % AC		Pre-develo Post-develo	pment Annua opment Annu	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus al Mass Loading - Nitrogen: al Mass Loading - Phosphoru:	kg/year
CATCHMENT NO.4 CHARAC	CTERISTICS:	ı	If mixed	land uses	(side calcul	lation)	OVERWRITE DEFAU	LT CONCENTRATIONS:
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
	2014 010 01		Total					BELOW TO SELECT:
Total pre-development catcher Total post-development catch Pre-development Non DCIA C Pre-development DCIA perce	ment or BMP analysis area: CN: ntage:		AC AC				il Mass Loading - Nitrogen:	concentrations kg/year kg/year
Post-development Non DCIA Post-development DCIA perce Estimated Area of BMP (used			% AC		Post-devel	opment Annu	al Mass Loading - Phosphorus al Mass Loading - Nitrogen; al Mass Loading - Phosphoru	kg/year

	Basin C	0.000 0.000	0.00 0.00 0.00 th 0.000 0.000 0.000 ac-ft	(P) EFFICIENCY GRAPH: (P) The purpose of the treatment efficiency graphs is to help illustrate the treatment efficiency of the wet detention system as the function of average annual residence time (and permanent pool volume). The firm (and permanent pool volume) time (and permanent pool volume is substantially increased. (N) Volume is substantially increased. Therefore, to provide the most economical BMP treatment system, other alternatives such as "treatment trains" and compensatory treatment should be considered.
DETENTION:		Catchment 1 Catchment 2 20.350 0.000 17.020 0.000 17.020 0.000 82.849 93.885 41.027 70.565 NO	10.77 0 6.385 0.0	
WET DETE	WET DETENTION POND SERVING:	Total pre-development catchment area: Total post-development catchment area: Average annual residence time (between 1 and 500 days): Littoral Zone used in the design: Littoral Zone efficiency credit (user specifies 10, 15, or 20%): Total Nitrogen removal required: Total Phosphorus removal efficiency provided: Total Phosphorous removal efficiency provided: Is the wet detention sufficient: Wet Detention Pond Characteristics:	Permanent Pool Depth: Minimum Permanent Pool Volume:	100 Treatment Efficiency (%): 10 10 10 10 10 10 10 10 10 10 10 10 10

Blue Numbers = Input data Red Numbers = Calculated or Carryover	GO TO STORMWATER TREATMENT ANALYSIS	REQUIRED REMAINING TREATMENT EFFICIENCIES OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION. USE FOR SIZING OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION.	Remaining treatment efficiency needed (Nitrogen): Remaining treatment efficiency needed (Phosphorus): Catchment 1 Catchment 2 Catchment 3 Catchment 4 70.216 79.226 8	TOP OF BANK (TOB) FREEBOARD BETWEEN EGE AND TOB FREEBOARD BETWEEN EGE AND TOB TOP OF FLOOD CONTROL ATTENUATION VOLUME - IF APPLICABLE OVERFLOW WATER ELEVATION (WHE CREST) WEIN CREST TOP OF FLOOD CONTROL ATTENUATION VOLUME (BDV) SAFETY GART WEIN CREST TOP OF FLOOD CONTROL ATTENUATION (WHE CREST) WEIN CREST TOP OF FLOOD CONTROL ATTENUATION (WHE CREST) WEIN CREST TOP OF FLOOD CONTROL ATTENUATION (WHE CREST) TOP OF FLOOD C	Source of Graphic: draft STORMWATER QUALITY APPLICANT'S HANDBOOK dated March 2010, by the Department of Environmental Protection, available at: http://www.dep.state.fl.us/water/wetlands/erp/rules/stormwater, March 2010
Blue Nur Red Nur		REQUIRED R DETENT!	Remaining treatmer Remaining treatmer	TOP OF BANK (TO FREEBC FREEBC ASHGWT OPTIONAL LITTORAL ZONE WITH A 6:1 (H TO V) OR FLATTER SIDE SLOPE. OTHERWISE, POND SIDE SLOPE SHGWT SHGWT SHGWT TYPICAL X-SE(Source of Graphic: d p

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin D	MADE BY:	СЈН	11/13/13
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	Den	0-118/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin D / Pond D1 - Suburban Best Fit					
Open Space - Fair Conditions	Pomelio (60%)	С	79 -	3.20	252.80
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 ·	0.53	36.57
Open Space - Fair Conditions	Basinger (20%)	D	84 -	1.07	89.88
Open Space - Fair Conditions	Paola (10%)	A	49 ,	0.53	25.97
Impervious (Paved parking, roads, etc.)			98 ·	1.47	144.26
Pond footprint	Pomelio	С	79 -	1.47	116.13
			TOTALS	. 8.27	665.61

COMPOSITE CN	80.46

PROCEDURE TO DETERMINE RUI	NOTE VOLUME IS BASED ON THE	Deb Equitiv	011 14112 10 14	0101220110	
1) DETERMINE SOIL STORAGE - S	·>	S = (1000 / CN) - 10			(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S)	S)^2 / (P + 0.8	* S)	(inches)
		P = rainfall in	inches		
3) DETERMINE RUNOFF VOLUMF	:- V(R)	V(R) = (R / 12)	2)*BASIN AR	EA	(acres-feet)
3) DETERMINE RUNOFF VOLUME CALCULATION TABLE	G - V(R)	V(R) = (R / 12	2)*BASIN AR	EA	(acres-feet)
CALCULATION TABLE		V(R) = (R / 12	2)*BASIN AR	EA R	· · · · · · · · · · · · · · · · · · ·
,	Design Storm Frequency		·		(acres-feet) V(R) (ac-ft)
CALCULATION TABLE		P	S	R	V(R)
CALCULATION TABLE Agency	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)
CALCULATION TABLE Agency SJRWMD Open Basin	Design Storm Frequency 3 yr / 24 hr	P (in) 5.60 ·	S (in) 2.43	R (in) 3.47	V(R) (ac-ft) 2.39

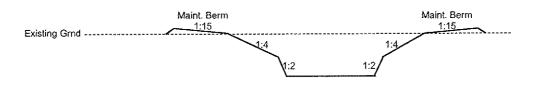
URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin D	MADE BY:	CJH	11/13/13
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DΣ.Þ	(A)(8) A

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin D / Pond D1 - Suburbau Best Fit					
Open Space - Fair Conditions	Pomello (60%)	С	79 ·	1.46	115.34
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 ·	0.24	16.84
Open Space - Fair Conditions	Basinger (20%)	D	84 ·	0.49	41.16
Open Space - Fair Conditions	Paola (10%)	A	49 '	0.24	11.96
Impervious (Paved parking, roads, etc.)			98 '	4.36	427.28
Pond NWL			100 .	0.84	84.00
Pond pervious area	Pomełlo	С	79 -	0.63	49.77
			TOTALS	. 8.27	746.34

COMPOSITE CN	90.27
	L

PROCEDURE TO DETERMINE RUN	OFF VOLUME IS BASED ON THE	E SCS EQUATI	ON AND IS A	s follows	:
1) DETERMINE SOIL STORAGE - S	INE SOIL STORAGE - S = (1000 / CN) - 10				(inches)
2) DETERMINE RUNOFF - R	**************************************	R = (P - 0.2*5	S)^2 / (P + 0.8	*S)	(inches)
		P = rainfall in	inches		
3) DETERMINE RUNOFF VOLUME	- V(R)>	V(R) = (R/1)	2)*BASIN AR	EA	(acres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	s	R	V(R)
		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60	1.08	4.49	3.09
SJRWMD Open Basin	10 yr / 24 hr	7.50 .	1.08	6.35	4.37
SJRWMD Open Basin	25 yr / 24 hr	8.60 ·	1.08	7.43	5.12
FDOT Critical Duration	100 yr / 72 hr	13.60	1.08	12.39	8.53
	{	1		1	1

URS PROJECT NO.: 240216-4-28-1 DTL DATE: 11/15/13 MADE BY: CHECKED BY: D. P DATE: 04/30/14 BAŞIN: Başin D POND: D1 CALCULATIONS FOR: SR 46 PD&E Water Quality Total Basin Area = 8.27 ac Paved Area = 4.36 ac Pond Area at NWL = 0.84 ac 1.0 "Over Total Basin Area = 0.69 Ac-Ft Α. B. 2.5 "Over Paved Area = 0.91 Ac-Ft Required PAV = 0.91 Ac-Ft 0.70 Ac-Ft 3yr / 24hr Required Attenuation (Post - Pre) = Required Attenuation (Post - Prc) = 0.78 Ac-Ft 10yr / 24hr 25yr / 24lır 0.81 Ac-Ft Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) = 0.91 Ac-Ft 100yr/72hr Required Treament Vol. + Attentuation Vol. = 1.81 Ac-Ft 100yr/72hr FDOT Critical Duration 1.61 Ac-Ft Required Treatment Vol. + Stormsewer Attentuation Vol. = 3yr / 24hr closed system


Stage Storage Calculations

ELEV.	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
21.00	Pond R/W (1:2 max slope tie down)	1.67				
25.00	Out Berm	1.47	1.29	1.00	1.29	4,2
24.00	Inside Berm	1.11	1.07	1.00	1.07	2.9
23.00	Provided Treatment Vol. + Attentuation Vol.	1.02	1.02	0.05	0.05	1.8
22,95	Required Treatment Vol. + Attentuation Vol.	1.02	1,01	0.20	0.20	1.8
22.75	Estimated Stormsewer Tailwater	1.00	0.97	0.72	0.69	1.6
22.03	Required Treatment Vol. (PAV)	0.93	0.89	1.03	0.91	0.9
21.00	Normal Water Level	0.84				
19.00		0.68				
13.00	Bottom	0.45			-	

Provided Treatment Vol. + Attentuation Vol. = Required Treatment Vol. + Attentuation Vol. = 1.81 Ac-Ft Required Treatment Vol. + Attentuation Stage = 22.95 Ft

1.86 Ac-Ft Provided Treatment Vol. + Attentuation Stage = 23.00 Ft (1 Ft freeboard)

Required Treatment Vol. + Stornsewer Attentuation Vol. = 1.61 Ac-Ft Estimated Stormsewer Tailwater Elevation = 22.75 Ft

Additional 20% of Pond R/W = 2.00 AC

URS

MADE BY:

CHECKED BY:

CJH

THE

SR 46 PD&E

DATE:

POND:

11/15/13

D1

PROJECT NO.: 240216-4-28-1

DATE: 04/30/14

BASIN: Basin D

Permanent Pool Calculations

Basin Characteristics

CALCULATIONS FOR:

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	4.36	0.95	4.14
Roadway Pervious Area	2.44	0.20	0.49
Pond Pervious Area	0.63	0.20	0.13
Pond Area at NWL.	0.84	1.00	0.84
Total	8.27		5.60

Composite C =

0.68

Wet Season Normal Rainfall (P) =

31 in

Min, Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

1.32 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

1.98 ac-ft

Stage Storage Calc.

E	LEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
25.00	Out. Berm	1.47				
24.00	In. Berm	1.11				
23.00		1.02	-			
22.03	(PAV)	0.93	-			
21.00	(NWL)	0.84	1			4.91
*****			0.76	2.00	1.52	
19.00		0.68	0.57	6.00	3.39	3.39
13.00	Bottom	0.45	1		1	

Permanent Pool Volume Provided =

4.91 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

52.0 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

5.85 ft

J	RS MADE BY: CHECKED BY: PROJECT:	DTL うごで SR 46 PD&E			DATE: DATE: POND:	11/15/13 04 (30) 44 D1	PROJECT NO.: 240216-4-28-1 BASIN: Basin D
			Hydraulic	Grade Lir	ne Clearance Ca	<u>lculations</u>	
	1) Estimated tailw	/ater elevation ir	n the pond (fo	r <u>preliminary</u>	∠storm sewer desigr	n) =	22.75 ft
	2) Calculation of p	post-developme	nt area for H0	aL check			
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
						-	
							-
					Total	* * * *	_
		or see Post CN	N worksheet	6.80	ac		
	3) Lowest gutter e	Station in Basi Station Baseline Offset (ft) Elevation (ft)	276+60 CL46 34.50 24.20	eck			
	4) Allowable Head	d Loss = lowest	gutter el - est	. tailwater el	=	1.45	5]tt
	5) Pipe length from	m Pond to lower	st gutter point	=	85	ft	
	6) Rational Metho	d for contributin	ng runoff - Q≔0	CiA	7) Estimation of Pip	e Size	
	C = int. = A = Q = Manning's n = Sum K = V =	6.50 6.80 30.05 0.012 2.37	in/hr ac cfs		HL = [4.61*(n^2)*L* HL = Allowable Heat n = Manning's n L = Length (ft) Q = Runoff (cfs) D = Pipe diameter (K = coefficient for m V = pipe velocity (fp g = gravitational cool	d Loss (ft) ft) ninor losses us)	0.81 trial <actual -="" hl="" ok<="" td=""></actual>
	8) Estimated Pipe	Diameter to sa	tisfy the condi	tions =	3.0 36		

URS					
PROJECT TITLE:					
PROJECT NUMBER:	240216-4-28-1			DATE	
BASIN DESIGNATION:	Basin D	MADE BY:	DTL	02/25/14	
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	TEF	04/18/14	

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin D / Pond D2 - Suburban Best Fit					
Open Space - Fair Conditions	Pomello (60%)	С	79 、	3.20	252.80
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 ·	0.53	36.57
Open Space - Fair Conditions	Basinger (20%)	D	84 ·	1.07	89.88
Open Space - Fair Conditions	Paola (10%)	A	49 \	0.53	25.97
Impervious (Paved parking, roads, etc.)			98 `	1,47	144.26
Pond footprint	Pomelio	С	79 `	1.47	116.13
			TOTALS	8.27	665.61

COMPOSITE CN	80.46

PROCEDURE TO DETERMINE RUNOI	F VOLUME IS BASED ON THE	SCS EQUATION	ON AND IS A	S FOLLOWS	:
		777 - 411111			
1) DETERMINE SOIL STORAGE - S		S = (1000 / C)	4)-10		(inches)
2) DETERMINE RUNOFF - R	>	$R = (P - 0.2*S)^2 / (P + 0.8*S)$			
		P = rainfall in i	nches		
3) DETERMINE RUNOFF VOLUME - $V(R)$					(acres-fect)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
•		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60	2.43	3.47	2.39
SJRWMD Open Basin	10 yr / 24 hr	7.50 '	2.43	5.21	3.59
SJRWMD Open Basin	25 yr / 24 hr	8.60 '	2.43	6.25	4.31
FDOT Critical Duration		13.60	2.43	11.07	

URS					
PROJECT TITLE: SR 46 PD&E					
PROJECT NUMBER:	240216-4-28-1			DATE	
BASIN DESIGNATION:	Basin D	MADE BY:	DTL	02/25/14	
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	5 EP	04/18/14	

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin D / Pond D2 - Suburban Best Fit					
Open Space - Fair Conditions	Pomello (60%)	С	79 -	1.46	115.34
Open Space - Fair Conditions	Immokalce (10%)	B/D	69 ·	0.24	16.84
Open Space - Fair Conditions	Basinger (20%)	D	84	0.49	41.16
Open Space - Fair Conditions	Paola (10%)	A	49 '	0.24	11.96
Impervious (Paved parking, roads, etc.)			98 ,	4.36	427.28
Pond NWL			100 ·	0.90	90.00
Pond pervious area	Pomelio	С	79 ·	0.57	45.03
			TOTALS	8.27	747.60

COMPOSITE CN	90.42

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) $R = (P - 0.2*S)^2 / (P + 0.8*S)$ 2) DETERMINE RUNOFF - R ----> (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE Design Storm Frequency P S R V(R) Agency (in) (in) (in) (ac-ft) 3.10 SJRWMD Open Basin 3 yr / 24 hr 5.60 · 1.06 4.50 7.50 • 1.06 4.38 SJRWMD Open Basin 10 yr / 24 hr 6.36 5.13 8.60 · 7.45 SJRWMD Open Basin 25 yr / 24 hr 1.06 12.41 8.55 13.60 · 1.06 FDOT Critical Duration 100 yr / 72 hr

filename: Basin D2_suburban_best_fit.xls

worksheet: POST CN

URS				
MADE BY:	DTL	DATE: 02/25/1	4 PROJECT	NO.: 240216-4-28-1
CHECKED BY:	DEF	DATE: O4 (31	O/A	
CALCULATIONS FOR:	SR 46 PD&E	POND: D2	B/	ASIN: Basin D
Water Quality				
Total Basin Area ==		8.27 ac		
Paved Area =		4.36 ac		
Pond Area at NWL =		0.90 ac		
Α.	1.0 " Over Total Basin A	.rea =	0.69 Ac-Ft	
В.	2.5 " Over Paved Area =		0.91 Ac-Ft	
	Required $PAV =$		0.91 Ac-Ft	
Required Attenuation	on (Post - Pre) =		0.71 Ac-Ft	3yr / 24hr
Required Attenuation			0.79 Ac-Ft	10yr / 24hr
Required Attenuation			0.83 Ac-Ft	25yr / 24hr
Required Attenuation	on (Post - Pre) =		0.92 Ac-Ft	100yr/ 72hr
Required Treament		1.83 Ac-Ft	100yr/ 72hr FDOT Critical Duration	
Required Treatment	Vol. + Stormsewer Attentua	ition Vol. =	1.62 Ac-Ft	3yr / 24hr closed system

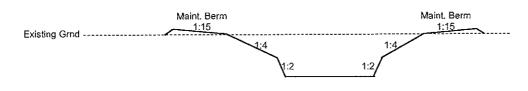
Stage Storage Calculations

ELEV. (ft)	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
21.00	Pond R/W	1.66	()	()	(10 20)	(117 117)
21.00	(1:2 max slope tic down)	1.00				
25.00	Out Berm	1.47				4.3
			1.31	1,00	1.31	
24.00	Inside Berm	1.14			Γ	3.0
		Ī	1,10	1.00	1.10	
23.00	Provided Treatment Vol. +	1.06			Ī	1.9
	Attentuation Vol.		1.06	0.12	0.13	
22.88	Required Treatment Vol. +	1.05			Ī	1.8
	Attentuation Vol.		1.04	0.20	0.21	
22.68	Estimated Stormsewer	1.03				1.6
	Tailwater		1.01	0.71	0.71	
21.97	Required Treatment Vol.	0.98			Γ	0.9
	(PAV)	Ī	0.94	0.97	0.91	
21.00	Normal Water Level	0.90				
10.00		0.76	·		-	
19.00		0.76				
13.00	Bottom	0.55			<u> </u>	

Required Treatment Vol. + Attentuation Vol. =
Required Treatment Vol. + Attentuation Stage =

1.83 Ac-Ft 22.88 Ft Provided Treatment Vol. + Attentuation Vol. =

Provided Treatment Vol. + Attentuation Stage =


1.96 Ac-Ft

23.00 Ft (1 Ft Freeboard)

Required Treatment Vol. + Stortnsewer Attentuation Vol. ==

Estimated Stormsewer Tailwater Elevation =

1.62 Ac-Ft 22.68 Ft

Additional 20% of Pond R/W = 1.99 AC

URS

MADE BY:

DTL

DATE: 02/25/14

PROJECT NO.: 240216-4-28-1

CHECKED BY: CALCULATIONS FOR: Ite SR 46 PD&E

DATE: 04/30/14 POND:

D2

BASIN: Basin D

Permanent Pool Calculations

Basin Characteristics

Land Use	Area (ac)	Runoff Coeff.	Product	
Roadway Paved Area	4.36	0.95	4.14	
Roadway Pervious Area	2.44	0.20	0.49	
Pond Pervious Area	0.57	0.20	0.11	
Pond Area at NWL	0.90	1.00	0,90	
Total	8.27		5,64	

Composite C =

0.68

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

1.33 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

2.00 ac-ft

Stage Storage Calc.

E	LEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
25.00	Out. Berm	1.47				
24.00	In. Berm	1.14			·······	:
23.00		1.06	-			
21.97	(PAV)	0.98	-			
21.00	(NWL)	0.90				5.59
	****		0.83	2.00	1.66	
19.00		0.76	0.66	6.00	3.93	3.93
13.00	Bottom	0.55	† ^{5.56}	0.00	0.50	

Permanent Pool Volume Provided =

5.59 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

58.7 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.21 ft

U .	RS MADE BY: CHECKED BY: PROJECT:	DTL ンピッ SR 46 PD&E			DATE: DATE: POND:	02/25/14 04/30/14 D2	PROJECT NO.: 240216-4-28-1 BASIN: Basin D
			<u>Hydraulic</u>	Grade Lir	ne Clearance Cal	culations	
	1) Estimated tailw	ater elevation ir	n the pond (fo	r <u>preliminar</u> y	z storm sewer design) =	22.68 ft
	2) Calculation of p	oost-developme	nt area for HG	aL check			
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
		1			Total		
		or see Post CN	N worksheet	6.80	ac		
	0)	devettes is Soci	in for UCL abo	n at			
	3) Lowest gutter e			eck I			
		Station Baseline	276+60 CL46		•		
		Offset (ft) Elevation (ft)	34.50 24.20				
					Г		1.
	4) Allowable Head					1.52	јπ
	5) Pipe length from	n Pond to lowes	st gutter point		660		
	6) Rational Metho	d for contributin	g runoff - Q≕0	CiA	7) Estimation of Pipe	e Size	
	C = int. ==	0.68 6.50	in/hr		$HL = (4.61*(n^2)*L*($	[Q^2]]/(D^5.33	s) + K(V^2)/2g
	A = Q =	6.80 30.05			HL = Allowable Head n = Manning's n	d Loss (ft)	0.86 trial
	Manning's n =		1		L = Length (ft) Q = Runoff (cfs)		
	Sum K =		fne		D = Pipe diameter (f K = coefficient for m		
	v -	0.12	,,po		V = pipe velocity (fp: g = gravitational con	s)	ear(42)
					y = gravitational con	ISIANI (32.2 IV:	Sec 2)
	8) Estimated Pipe	Diameter to sat	tisfy the condi	tions =	3.5		
				•	42	ın	

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin D	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	JEP	04/18/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin D / Pond D3 - Suburban Best Fit					
Open Spacc - Fair Conditions	Pomello (60%)	С	79 ·	3.20	252.80
Open Space - Fair Conditions	Immokalee (10%)	B/D	69 -	0.53	36.57
Open Space - Fair Conditions	Basinger (20%)	D	84 ·	1.07	89.88
Open Space - Fair Conditions	Paola (10%)	A	49 `	0.53	25.97
Impervious (Pavcd parking, roads, etc.)			98 ·	1.47	144.26
Pond footprint	Pomello	С	79 ·	1.47	116.13
			TOTALS	8.27	665.61

COMPOSITE CN	80.46
	f I

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF v	OLUME IS BASED ON THE	SCS EQUATION	ON AND IS A	s follows	:
I) DETERMINE SOIL STORAGE - \$	>	S = (1000 / C)	۱) - 10		(inches)
2) DETERMINE RUNOFF - R		$R = (P - 0.2*S)^2 / (P + 0.8*S)$			(inches)
		P = rainfall in i	nches		
3) DETERMINE RUNOFF VOLUME - V(R)	>	V(R) = (R / 12))*BASIN AR	EA	(acres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60 ·	2.43	3.47	2.39
SJRWMD Open Basin	10 yr / 24 hr	7.50	2.43	5.21	3.59
SJRWMD Open Basin	25 yr / 24 hr	8.60	2.43	6.25	4.31
FDOT Critical Duration	100 yr / 72 hr	13.60	2.43	11.07	7.63

filename: Basin D3_suburban_best_fit.xls

worksheet: PRE CN

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin D	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04118/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin D / Pond D3 - Suburban Best Fit					
Open Space - Fair Conditions	Pomello (60%)	С	79	1.46	115.34
Open Space - Fair Conditions	Immokalee (10%)	B/D	69	0.24	16.84
Open Space - Fair Conditions	Basinger (20%)	D	84	0.49	41.16
Open Space - Fair Conditions	Paola (10%)	A	49	0.24	11.96
Impervious (Paved parking, roads, etc.)			98	4.36	427.28
Pond NWL			100	0.88	88.00
Pond pervious area	Pomello	С	79	0.59	46.61
			TOTALS	8.27	747.18

COMPOSITE CN	90.37

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RU	NOFF VOLUME IS BASED ON THE	SCS EQUATIO	ON AND IS A	S FOLLOWS:	!
1) DETERMINE SOIL STORAGE -	S>	S = (1000 / CN	1) - 10		(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S))^2/(P+0.8	*S)	(inches)
		P = rainfall in i	nches		
3) DETERMINE RUNOFF VOLUM	E - V(R)	V(R) = (R/12)*BASIN AR	BA	(acres-fect)
CALCULATION TABLE					
	Design Storm Frequency	P	s	R	V(R)
CALCULATION TABLE Agency	Design Storm Frequency	P (in)	S (in)	R (in)	V(R)
Agency	Design Storm Frequency	-	-		1 ' '
Agency SJRWMD Open Basin		(in)	(in)	(in)	(ac-ft)
Agency SJRWMD Open Basin SJRWMD Open Basin	3 yr / 24 hr	(in) 5.60	(in) 1.07	(in) 4.50	(ac-ft) 3.10
Agency SJRWMD Open Basin SJRWMD Open Basin SJRWMD Open Basin SJRWMD Open Basin FDOT Critical Duration	3 yr / 24 hr 10 yr / 24 hr	(in) 5.60 · 7.50 ·	(in) 1.07 1.07	(in) 4.50 6.36	(ac-ft) 3.10 4.38

filename: Basin D3_suburban_best_fit.xls

worksheet: POST CN

URS MADE BY:	DTL	DATE: 02/25/14	k.	NO.: 240216-4-28-1
CHECKED BY:	TSEP	DATE: CHISOIL		
CALCULATIONS FOR:	SR 46 PD&E	POND: D3	BA	SIN: Basin D
Water Quality				
Total Basin Arc	a =	8.27 ac		
Paved Area =		4.36 ac		
Pond Area at N	WL ==	0.88 ac		
Α.	1.0 " Over Total Basin A	Arca =	0.69 Ac-Ft	
B.	2.5 " Over Paved Area =	2	0.91 Ac-Ft	
	Required PAV =		0.91 Ac-Ft	
Required Atter	nuation (Post - Pre) =		0.71 Ac-Ft	3yr / 24hr
-	nuation (Post - Pre) =		0.79 Ac-Ft	10yr / 24hr
	nuation (Post - Prc) =		0.82 Ac-Ft	25yr / 24hr
Required Atter	nuation (Post - Pre) =		0.92 Ac-Ft	100yr/ 72hr
Required Trea	ment Vol. + Attentuation Vol. =		1.82 Ac-Ft	100yr/ 72hr FDOT Critical Duration
Required Trea	tment Vol. + Stormsewer Attentus	ation Vol. =	1.62 Ac-Ft	3yr / 24hr closed system

Stage Storage Calculations

ELEV. (ft)	Description	AREA (ac)	AVG AREA (ac)	Delta D (ft)	Delta storage (ac-ft)	Sum Storage (ac-ft)
21.00	Pond R/W (1:2 max slope tie down)	1.66				
25.00	Out Berm	1.47	1.30	1.00	1.30	4.32
24.00	Inside Berm	1.13				3.03
23.00	Provided Treatment Vol. +	1.05	1.09	1.00	1.09	1.9:
22.90	Attentuation Vol. Required Treatment Vol. +	1.04	1.04	0.10	0.10	1.8
22.70	Attentuation Vol. Estimated Stormsewer	1.02	1.03	0.20	0.21	1.6
21.99	Tailwater Required Treatment Vol.	0.96	0.99	0.71	0.70	0.9
	(PAV)		0.92	0.99	0.91	
21.00	Normal Water Level	0.88				
19.00		0.73				
13.00	Bottom	0.51				

Required Treatment Vol. + Attentuation Vol. =

1.82 Ac-Ft

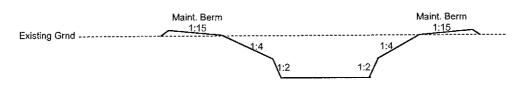
Provided Treatment Vol. + Attentuation Vol. =

1.93 Ac-Ft

Required Treatment Vol. + Attentuation Stage =

22.90 Ft

Provided Treatment Vol. + Attentuation Stage =


23.00 Ft (1 Ft freeboard)

Required Treatment Vol. + Stormsewer Attentuation Vol. =

Estimated Stormsower Tailwater Elevation =

1.62 Ac-Ft

22.70 Ft

Additional 20% of Pond R/W = 1.99 AC

URS

MADE BY: CHECKED BY: DTL

DATE: DATE: 04/30/14

02/25/14

PROJECT NO.: 240216-4-28-1

DEP SR 46 PD&E

POND: D3 BASIN: Basin D

Permanent Pool Calculations

Basin Characteristics

CALCULATIONS FOR:

Land Use	Area (ac)	Runoff Coeff.	Product
Roadway Paved Area	4.36	0.95	4.14
Roadway Pervious Area	2.44	0.20	0.49
Pond Pervious Area	0.59	0.20	0.12
Pond Area at NWL	0.88	1.00	0.88
Total	8.27		5.63

Composite C =

0.68

Wet Season Normal Rainfall (P) =

31 in

Min. Permanent Pool Vol.

= Area x Composite C x P x 14 / 153 / 12 =

1.33 ac-ft

Min. Permanent Pool Vol. Req. if Littoral Zone is Not Provided = 1.5 x Min Perm Pool Vol. =

2.00 ac-ft

Stage Storage Calc.

El	LEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
((ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
25.00	Out. Berm	1.47				
24.00	In. Berm	1.13				
23.00		1.05	_			
21.99	(PAV)	0.96				
21.00	(NWL)	0.88	0,81	2.00	1.61	5,33
19.00		0.73	.			3.72
13.00	Bottom	0.51	0.62	6.00	3.72	

Permanent Pool Volume Provided =

5.33 ac-ft

Resident Time Provided = Perm. Pool Vol. Provided *153*12 / Area / C / P =

56.1 Days

Note: An additional 50% permanent pool volume is provided in lieu of providing a littoral zone. (See SJRWMD PIM Vol II Section 8.7)

Mean Depth

= Permanent Pool Volume / Area at NWL =

6.06 ft

JRS						
MADE BY:	DTL			DATE:	02/25/14	PROJECT NO.: 240216-4-28-1
CHECKED BY:				DATE:	04130114	
PROJECT:	SR 46 PD&E			POND:	D3	BASIN: Basin D
		Hydraulic	Grade Lic	ne Clearance Cal	culations	
		riyuraunc	Grade Lii	ie Clearance Car	Culations	
1) Estimated tail	water elevation i	n the pond (fo	r <u>preliminar</u> y	∠ storm sewer desigr	n) =	22.70 ft
•						
2) Calculation of	nost-developme	nt area for H0	3L check			
L) Galdalation of	podt dovolopino	in aloa ioi iii	0.1.0011			_
Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
	-		1			
						
L			<i></i>	Total		
				1		
	or see Post Cl	N worksheet	6.80	ac		
3) Lowest gutter	elevation in Ras	in for HGL ch	eck			
3) Lowest gatter	cicyation in bus	in los mac on	OUN			
	Station	276+60	1			
	Baseline	CL46 .]			•
	Offset (ft)	34.50				
	Elevation (ft)	24.20				
4) Allowable Hea	ad Loss = lowest	gutter el - est	. tailwater e	l =	1.50]ft
,		-				•
Pipe length from the first property in the property in	om Pond to lowe	st gutter point	==	1170	ft	
O) = - 1 1 M - 31-			O: A	7) Catimatian of Din	o Cizo	
6) Rational Meth	od for contributif	ig runoii - Q=	CIA	7) Estimation of Pip	e Size	
С	= 0.68	1		HL = [4.61*(n^2)*L*	(Q^2)]/(D^5.33	i) + K(V^2)/2g
int.		in/hr		. , ,	. /2 .	
A =	= 6.80	ac		HL = Allowable Hea	d Loss (ft)	1.25 trial ·
Q =	= 30.05	cfs		n = Manning's n		<actual -="" hl="" ok<="" td=""></actual>
		1		L = Length (ff)		
Manning's n				Q = Runoff (cfs) D = Pipe diameter (f+\	
Sum K V :		fns		K = coefficient for m		
V -	- 1	liba		V = pipe velocity (fp		
				g = gravitational cor		sec^2)
				-		
					_	
8) Estimated Pip	e Diameter to sa	tisfy the cond	itions =	3.5	ft	
				42	ın	

WATERSHED	CHARACTERISTICS	GO TO S	TORMWA	TER TREA	TEMENT A	NALYSIS	Blue Numbers = Red Numbers =	Input data Calculated or Carryover
SELECT CATC	HMENT CONFIGURATION	CLICK ON CE		V TO SELEC		RATION	VIEW CATCHMEN	IT CONFIGURATION
CATCHMENT NO.1 CHARACTERISTICS:		\ If	***************************************		e calculatio	n)	OVERWRITE DEFAULT (CONCENTRATIONS USING:
Pre-development land use: with default EMOs Post-development land use:	CLICK ON CELL BELOW TO SEL Single-Family: TN=2,070 TP=0.3 CLICK ON CELL BELOW TO SEL Highway: TN=1,640 TP=0.220	27 ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L
with default EMCs			Total				CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchir Total post-development catchir Pre-development Non DCIA C Pre-development DCIA percer	nent or BMP analysis area: N: stage:	8:27 8:27 80:46 0:00 81:64	AC %				USE DEFAULT O Mass Loading - Nitrogen: Mass Loading - Phosphorus:	10.161 kg/year 1.605 kg/year
Post-development Non DCIA (Post-development DCIA perce Estimated Area of BMP (used	on: ntage: for rainfall excess not loadings)	52.72 1,47	%		Post-develo	pment Annua	mass Loading - Priosphords: al Mass Loading - Nitrogen; al Mass Loading - Phosphorus:	27.891 kg/year
CATCHMENT NO.2 CHARAC		\ i f	mixed land	d uses (sid	e calculatio	n)	OVERWRITE DEFAUI	LT CONCENTRATIONS:
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L
			Total				CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchm Total post-development catchm Pre-development Non DCIA C Pre-development DCIA percer Post-development Non DCIA 0	nent or BMP analysis area: N: stage:		AC AC %				USE DEFAULT O Mass Loading - Nitrogen: Mass Loading - Phosphorus:	CONCENTRATIONS kg/year kg/year
Post-development DCIA perce	ntage: for rainfall excess not loadings)		% AC		Post-develo	pment Annua	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus:	kg/year
CATCHMENT NO.3 CHARAC	TERISTICS:	\	mixed lan	d uses (sid	le calculatio		OVERWRITE DEFAUI	LT CONCENTRATIONS:
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L
Total pre-development catchm Total post-development catchr	nent or BMP analysis area:		Total AC AC					BELOW TO SELECT: CONCENTRATIONS
Pre-development Non DCIA C Pre-development DCIA percer Post-development Non DCIA (Post-development DCIA perce Estimated Area of BMP (used	itage: CN;		% % AC		Pre-develor Post-develo	oment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus: al Mass Loading - Nitrogen: al Mass Loading - Phosphorus:	kg/year kg/year kg/year kg/year
CATCHMENT NO.4 CHARAC			mixed lan	d uses (sid	ie calculatio	on)	OVERWRITE DEFAUI	LT CONCENTRATIONS:
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
·			Total				CLICK ON CELL E	BELOW TO SELECT:
Total pre-development catchm Total post-development catchr Pre-development Non DCIA C Pre-development DCIA percer	nent or BMP analysis area: N:		AC AC %		Pre-develor	oment Annual	USE DEFAULT C Mass Loading - Nitrogen:	ONCENTRATIONS
Post-development Non DCIA (Post-development DCIA perce	ON:		% AC		Pre-develor Post-develo	oment Annual	Mass Loading - Phosphorus: id Mass Loading - Nitrogen: id Mass Loading - Phosphorus:	kg/year kg/year

	Basin D	2 Catchment 3 Catchment 4 0 0.000 0.000 ac 0 0.000 0.000 ac NO	0.00 0.00 ft 0.000 0.000 ac-ft	NOTE FOR TREATEMENT EFFICIENCY GRAPH: The purpose of the treatment efficiency graphs is to help illustrate the treatment efficiency of the wet detention system as the function of average annual residence time (and permanent pool volume). The graph illustrates that there is a point of diminished return as the permanent pool volume is substantially increased. Therefore, to provide the most economical BMP treatment system, other afternatives such as "treatment trains" and compensatory treatment should be considered.
TION:		Catchment 1 Catchment 2	10.34 0.00 1.965 0.000	System Efficiency (P) CAT 1 System Efficiency (P) CAT 2 System Efficiency (P) CAT 3 System Efficiency (P) CAT 4 CAT 4 System Efficiency (N) CAT 1 System Efficiency (N) CAT 1 System Efficiency (N) CAT 2 System Efficiency (N) CAT 3 System Efficiency (N) CAT 4 System Efficiency (N) System Efficiency (N)
WET DETENTION:	WET DETENTION POND SERVING:	Total pre-development catchment area: Total post-development catchment area: Average annual residence time (between 1 and 500 days): Littoral Zone used in the design: Littoral Zone efficiency credit (user specifies 10, 15, or 20%): Total Nitrogen removal required: Total Nitrogen removal efficiency provided: Total Nitrogen removal efficiency provided: Is the wet detention sufficient: Wet Detention Pond Characteristics:	Permanent Pool Depth: Minimum Permanent Pool Volume:	Treatment Efficiency (%): Treatment Efficiency (%): Average Annual Residence Time (days):

Blue Numbers = Calculated or Carryover	GO TO STORMWATER TREATMENT ANALYSIS REQUIRED REMAINING TREATMENT EFFICIENCIES OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION. USE FOR SIZING OF TREATMENT SYSTEM IN SERIES WITH WET DETENTION.	Remaining treatment efficiency needed (Nitrogen): Catchment 1 Catchment 2 Catchment 3 Catchment 4 38.924 Catchment 1 Catchment 3 Catchment 4 38.924 Catchment 1 Catchment 3 Catchment 4 Catchment 2 Catchment 3 Catchment 4 Catchment 2 Catchment 3 Catchment 4 Catchment 1 Catchment 3 Catchment 4 Catchment 2 Catchment 3 Catchment 4 Catchment 2 Catchment 6 Catchment 2 Catchment 3 Catchment 4 Catchment 6 Catchment 6 Catchment 6 Catchment 7 Catchment	TYPICAL X-SECTION OF A WET DETERMINED TO BE TWEEN EDE AND TOB FREEBOARD BETWEEN EDE AND TOB SHGWT TABLE TYPICAL X-SECTION OF A WET DETERMINES BY STEEN TOP OF FLOOD CONTROL ATTENDION SYSTEM TOP OF BANK (TOB) SHGWT TABLE TOP OF BANK (TOB) SHEEBOARD BETWEEN EDE AND TOB SHGWT TABLE TOP OF BANK (TOB) SHEEBOARD BETWEEN EDE AND TOB SHGWT TABLE TABLE TOP OF FLOOD CONTROL ATTENDATION (WEIR CREST) SHGWT TABLE TABLE TOP OF FLOOD CONTROL ATTENDATION (WEIR CREST) SHGWT TABLE T	Source of Graphic: draft STORMWATER QUALITY APPL!CANT'S HANDBOOK dated March 2010, by the Department of Environmental Protection, available at: http://www.dep.state.fl.us/water/wetlands/erp/rules/stormwater, March 2010
Blue N Red N	REQUIRED	Remaining treatm Remaining treatm	OPTIONAL LITTORA WITH A 6:1 (H TO FLATTER SIDE SI WITH A 4:1 (H TO	Source of Graphic

URS							
PROJECT TITLE:	SR 46 PD&E						
PROJECT NUMBER:	240216-4-28-1			DATE			
BASIN DESIGNATION:	Basin E	MADE BY:	СЈН	11/19/13			
BASIN ANALYSIS (PRE/POST):	PRE	СНЕСКЕЙ ВУ:	カモア	04/18/14			

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin E / Pond E2 - Suburban Typical					
Open Space - Fair Conditions	Pomello (40%)	С	79 .	1.43	113.20
Open Space - Fair Conditions	Basinger (20%)	D	84 ·	0.72	60,48
Open Space - Fair Conditions	Astatula (40%)	А	49 ·	1.43	70.21
					•
Impervious (Paved parking, roads, etc.)			98 ·	1.15	113.05
Pond footprint	Astatuła	A	49 ·	1.45	71.05
			TOTALS	6.19	427.99

COMPOSITE CN	69.15

PROCEDURE TO DETERMINE RU	NOFF VOLUME IS BASED ON THE	bob Equition						
i) DETERMINE SOIL STORAGE - :	TERMINE SOIL STORAGE - S S = (1000 / CN) - 10							
2) DETERMINE RUNOFF - R	>	$R = (P - 0.2*S)^2 / (P + 0.8*S)$						
		P = rainfall in i	nches					
3) DETERMINE RUNOFF VOLUME - V(R)								
3) DETERMINE RUNOFF VOLUMI	E - V(R)>	$\mathbf{V}(\mathbf{R}) = (\mathbf{R} / 12)$	e)*Basin ar	EA	(acres-feet)			
3) DETERMINE RUNOFF VOLUMI	E - V(R)>	$\mathbf{V}(\mathbf{R}) = (\mathbf{R} / 12)$?)*BASIN AR	EA	(acres-feet)			
CALCULATION TABLE	.,	V(R) = (R / 12	e)*BASIN AR	EA R	(acres-feet)			
,	Design Storm Frequency		,		, ,			
CALCULATION TABLE	.,	P	S	R	V(R)			
CALCULATION TABLE Agency	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)			
CALCULATION TABLE Agency SJRWMD Open Basin	Design Storm Frequency 3 yr / 24 hr	P (in) 5.60	S (in) 4.46	R (in) 2.42	V(R) (ac-ft) 1.25			

URS								
PROJECT TITLE:	SR 46 PD&E							
PROJECT NUMBER:	240216-4-28-1			DATE				
BASIN DESIGNATION:	Basin E	MADE BY:	СЈН	11/19/13				
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	Pera	CH130/14				

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin E / Pond E2 - Suburban Typical					
Open Space - Fair Conditions	Pomello (40%)	С	79	0.69	54.86
Open Space - Fair Conditions	Basinger (20%)	D	84	0.35	29.16
Open Space - Fair Conditions	Astatula (40%)	A	49	0.69	34.03
Impervious (Paved parking, roads, etc.)			98	3.00	294.00
Pond pervious area	Astatula	A	49	1.45	71.05
			TOTALS	6.19	483.10

COMPOSITE CN	78.10
--------------	-------

PROCEDURE TO DETERMINE RUNOFF	VOLUME IS BASED ON THE	E SCS EQUATI	ON AND IS A	S FOLLOWS	:
1) DETERMINE SOIL STORAGE - S		S = (1000/C	พ) - 10		(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*8)	S)^2 / (P + 0.8	* S)	(inches)
		P = rainfall in	inches		
3) DETERMINE RUNOFF VOLUME - V(R)>	V(R) = (R/1	2)*BASIN AR	EA	(acres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60	2.80	3.24	1.67
SJRWMD Open Basin	10 yr / 24 hr	7.50	2.80	4.94	2.55
SJRWMD Open Basin	25 yr / 24 hr	8.60	2.80	5.96	3.07
			<u> </u>		

URS DATE: 11/19/13 PROJECT NO.: 240216-4-28-1 MADE BY: CJH 04/30/14 DEP DATE: CHECKED BY: SR 46 PD&E POND: BASIN: Basin E CALCULATIONS FOR: E2 Water Quality 6.19 ac Total Basin Area = 3.00 ac Paved Area = Off-Line Dry Retention 0.26 Ac-Ft 0.50 " Over Total Basin Area = A. В. 1.25 " Over Paved Area = 0.31 Ac-Ft Required PAV for off-line retention = 0.31 Ac-Ft On-Line Dry Retention 0.57 Ac-Ft 0.50 "Over Total Basin Area + Required off-line PAV = Required Attenuation (Post - Pre) = 0.42 Ac-Ft 3yr / 24hr 0.51 Ac-Ft Required Attenuation (Post - Pre) = 10yr / 24hr Required Attenuation (Post - Pre) = 0.55 Ac-Ft 25yr / 24hr

1.12 Ac-Ft

0.99 Ac-Ft

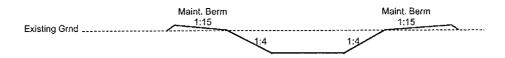
25yr / 24hr SJRWMD Open basin

3yr / 24hr closed system

Stage Storage Calculations

Required Treatment Vol. + Attenuation Vol. =

Required Treatment Vol. + Stormsewer Attenuation Vol. =


	ELEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
23.00	Pond R/W (1:2 max slope tie down)	1.59				
26.00	Out Berm	1.45	1.29	1.00	1,29	4.29
25.00	Inside Berm	1.12	1.08	1.00	1.08	3.00
24.00	Provided Treatment Vol. + Attenuation Vol.	1,04	1.01	0,79	0.80	1.92
23.21	Required Treatment Vol. + Attenuation Vol.	0.98	0.97	0.14	0.14	1.12
23.07	Estimated Stormsewer Tailwater	0.97	0.95	0,44	0.42	0.99
22.63	Required Treatment Vol. (PAV)	0.93	0.93	0.13	0.12	0.57
22.50	()	0.92			····	0.45
22.00	Bottom	0.88	0.90	0.50	0.45	

Required Treatment Vol. + Attenuation Vol. = 0.99 Ac-Ft Provided Treatment Vol. + Attenuation Vol. = 1.92 Ac-Ft Required Treatment Vol. + Attenuation Stage = 23.21 Ft. Provided Treatment Vol. + Attenuation Stage = 24.00 Ft.

Required Treatment Vol. + Stormsower Attenuation Vol. =

 $Estimated\ Stormsewer\ Tailwater\ Elevation =$

0.99 Ac-Ft 23.07 Ft.

Additional 20% of Pond R/W = 1.91 ac

Ü	RS MADE BY: CHECKED BY; PROJECT:	CJH ラジア SR 46 PD&E	DATE: DATE: POND:	11/19/13 04/30/14 E2	PROJECT NO.: 240216-4-28-1 BASIN: Basin E
		Hydraulic (arade Line Clearanc	e Calculati	ions
	1) Estimated tails	water elevation in the pond (for <u>prelim</u>	i <u>nary</u> storm sewer desigr	n) =	23.07 ft
	2) Calculation of	post-development area for HGL check	<		
	Baseline		(ft) Roadway width (ft)	Area (ac)	7
			(4)		
					<u>-</u>
					_
			Total]
		or see Post CN worksheet	1.74 ac		
	3) Lowest gutter	elevation in Basin for HGL check			
		Station 296+64 Baseline CL46			
		Offset (ft) 34.50			
		Elevation (ft) 24.40			
	4) Aliowable Hea	d Loss = lowest gutter el - est, tailwat	erel= [1.33]ft
	5) Pipe length fro	m Pond to lowest gutter point =	320	ft	
		od for contributing runoff - Q=CiA	7) Estimation of Pipe	e Size	
	C =	0.68	HL = [4.61*(n^2)*L*(Q^2)}/(D^5.3	3) + K(V^2)/2g
	int. = A =		HL = Allowable Hea		0.59 trial
	Q =		n = Manning's n	u 1033 (it)	<actual -="" hl="" ok<="" td=""></actual>
			L = Length (ft)		•
	Manning's n = Sum K =	}	Q = Runoff (cfs) D = Pipe diameter (f	t)	
	V =		K = coefficient for m		
		<u> </u>	V = pipe velocity (fp:	s)	
			g = gravitational con	stant (32.2 ft/	(sec^2)
	8) Estimated Pine	e Diameter to satisfy the conditions ==	3.0	}	
	o, command i ipi	S SIGNOSON (S GAMELY WITE SOME MAINE	36	n	

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin E	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	D&P	04/18/14

LAND-USE DESCRIPTION	SOIL NAME	SOIL	CN	AREA	PRODUCT
Basin E / Pond E3 - Suburban Typical	NAME	GROUI	CK	(ac)	TRODUCT
Open Space - Fair Conditions	Poinello (40%)	С	79 .	1.43	113.20
Open Space - Fair Conditions	Basinger (20%)	D	84 ·	0.72	60.48
Open Space - Fair Conditions	Astatula (40%)	A	49 ·	1.43	70.21
				·····	
Impervious (Paved parking, roads, etc.)			98 •	1.15	113.05
Pond footprint	Astatula	A	49 .	1.45	71.05
			TOTALS	6.19	427.99

COMPOSITE CN	69.15

3) DETERMINE RUNOFF VOLUME	E - V(R)>	$V(R) = \{ R / 12 \}$)*BASIN ARI	EA	(acres-feet
A DETERMINE RUNCEF VOLUME	C - V(R)>	$V(R) = \{R/12$	}*BASIN ARI	EA	(acres-feet
		P = rainfall in i	nches		
.,		,	`	•	
E RUNOFF - R	>	R = (P - 0.2*S)	^2 / (P + 0.8°	*S)	(inches)
,		•			
i) determine soil storage - s	,,>	S = (1000 / C)	1)-10		(inches)

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin E	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	757	04/20/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin E / Pond E3 - Suburban Typical					
Open Space - Fair Conditions	Pomello (40%)	С	79	0.69	54.86
Open Space - Fair Conditions	Basinger (20%)	D	84	0.35	29.16
Open Space - Fair Conditions	Astatula (40%)	Λ	49	0.69	34.03
Impervious (Paved parking, roads, etc.)			98	3.00	294.00
Pond pervious area	Astatula	Λ	49	1.45	71.05
			TOTALS	6.19	483.10

COMPOSITE CN	78.10

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: -----> S = (1000 / CN) - 10(inches) 1) DETERMINE SOIL STORAGE - S 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE V(R) **Design Storm Frequency** P S R Agency (ac-ft) (in) (in) (in) 1.67 SJRWMD Open Basin 3 yr / 24 hr 2.80 3.24 5.60 2.55 10 yr / 24 hr 4.94 7.50 2.80 SJRWMD Open Basin 5.96 3.07 25 yr / 24 hr 8.60 2.80 SJRWMD Open Basin

worksheet: POST CN

URS MADE BY: CHECKED BY: CALCULATIONS FOR:

DTL DER

02/25/14 DATE: 61/30/4

E3

PROJECT NO.: 240216-4-28-1

SR 46 PD&E

DATE: POND:

BASIN: Basin E

Water Quality

Total Basin Area = Paved Area =

6.19 ac 3.00 ac

Off-Line Dry Retention

A. B. 0.50 " Over Total Basin Area =

0.26 Ac-Ft

1.25 " Over Paved Area = Required PAV for off-line retention = 0.31 Ac-Ft 0.31 Ac-Ft

On-Line Dry Retention

0.50 " Over Total Basin Area + Required off-line PAV =

0.57 Ac-Ft

Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) =

0.42 Ac-Ft 3yr / 24hr 0.51 Ac-Ft 0.55 Ac-Ft

10yr / 24hr 25yr / 24hr

Required Treatment Vol. + Attenuation Vol. =

1.12 Ac-Ft

25yr / 24hr SJRWMD Open basin

Required Treatment Vol. + Stormsewer Attenuation Vol. =

0.99 Ac-Ft

3yr / 24hr closed system

Stage Storage Calculations

	ELEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
22.00	Pond R/W (1:2 max slope tie down)	£.64				
26.00	Out Berm	1.45	1.29	1.00	1.29	4.27
25.00	Inside Berm	1,12	1.08	1,00	1,08	2.99
24.00	Provided Treatment Vol. + Attenuation Vol.	1.04	1,00	0.78	0.78	1.91
23.22	Required Treatment Vol. + Attenuation Vol.	0.97	0,97	0.70	0.14	1.12
23.08	Estimated Stormsewer Tailwater	0.96	0.94	0,44	0.41	0.99
22.64	Required Treatment Vol.	0.92		0.14	0.13	0.57
22.50	(PAV)	0.91	0.92			0.45
22.00	Bottom	0.87	0.89	0.50	0.45	

Required Treatment Vol. + Attenuation Vol. =

0.99 Ac-Ft

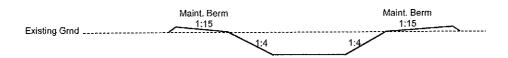
Provided Treatment Vol. + Attenuation Vol. =

1.91 Ac-Ft

Required Treatment Vol. + Attenuation Stage =

23.22 Ft.

Provided Treatment Vol. + Attenuation Stage =


24.00 Ft.

Required Treatment Vol. + Stormsewer Attenuation Vol. =

Estimated Stormsewer Tailwater Elevation =

0.99 Ac-Ft

23.08 Ft.

Additional 20% of Pond R/W = 1.97 ac

JRS MADE BY: CHECKED BY: PROJECT:	DTL つじっ SR 46 PD&E			DATE: DATE: POND:	02/25/14 (에 (영어) 년 E3	PROJECT NO.: 240216-4-28-1 BASIN: Basin E
1) Estimated tail	water elevation i			ade Line Clearar y storm sewer desig		23.08 ft
r) Estimated tais	water elevation i	n the pond (re	· presidings	, storm sewer desig	, -	25.00
2) Calculation of	post-developme		GL check			_
Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)	
						- - -
		••••		Total		<u>-</u> -
	or see Post Cf	N workehoot	4.74			J
,	Baseline Offset (ft) Elevation (ft) ad Loss = lowest om Pond to lowe			al = 102	1.32	2]ft
6) Rational Meth	od for contributir	ng runoff - Q=	CiA	7) Estimation of Pip	e Size	
C int. A = Q = Manning's n Sum K V =	= 6.50 = 4.74 = 20.93 = 0.012 = 2.37	in/hr ac cfs		HL = [4.61*(n^2)*L* HL = Allowable Heat n = Manning's n L = Length (ft) Q = Runoff (cfs) D = Pipe diameter (K = coefficient for n V = pipe velocity (ft g = gravitational coefficients)	ad Loss (ft) . (ft) ninor losses	0.89 trial <actual -="" hl="" ok<="" td=""></actual>
8) Estimated Pip	e Diameter to sa	itisfy the cond	itions =	2.5	ft in	

PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E.

Project Data

Project Name:

SR 46 PD&E

Simulation Description:

Pond E: Volume below the weir elevation has been used as a slug load

Project Number:

Engineer:

DTL

Supervising Engineer:

Date:

11-19-2013

Aquifer Data

Base Of Aquifer Elevation, [B] (ft datum):

7.11

Water Table Elevation, [WT] (ft datum):

19.61

Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day):

0.80

Fillable Porosity, [n] (%):

25.00

Information obtained from Preliminary Roodway Soil Survey 10d E Study for Sk 46 Ardanan & Assoc, The

Unsaturated Vertical Infiltration Rate, [lv] (ft/day):

Maximum Area For Unsaturated Infiltration, [Av] (ft²):

38277.9

Geometry Data

Equivalent Pond Length, [L] (ft):

306.0 '

Equivalent Pond Width, [W] (ft):

126.0 •

Ground water mound is expected to intersect the pond bottom

Stage vs Area Data

Stage	Area
(ft datum)	(ft²)
22.00	38277.9
25.00	48727.4 •
26.00	63061.7 ·

PONDS Version 3.3.0229 **Retention Pond Recovery - Refined Method** Copyright 2008 Devo Seereeram, Ph.D., P.E.

Scenario Input Data

Scenario 1 :: 24829.2 ft3 slug load

Hydrograph Type: Modflow Routing:

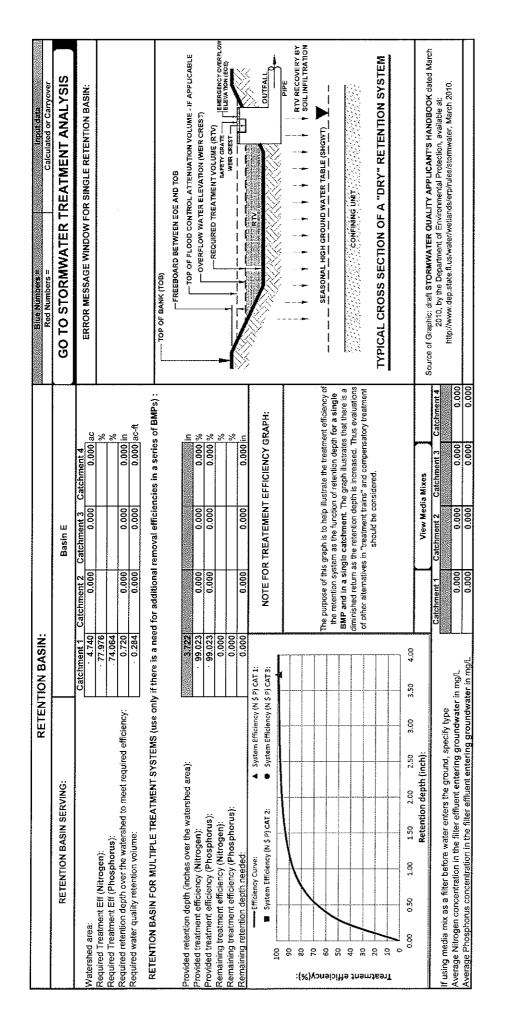
Slug Load Routed with infiltration

Treatment Volume (ft³)

24829.2

Initial ground water level (ft datum) default, 19.61

Time After	Time After
Storm Event	Storm Event
(days)	(days)
0.100	2.000
0.250	2.500
0.500	3.000
1.000	
1.500	


PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E.

Detailed Results :: Scenario 1 :: 24829.2 ft³ slug load

Elapsed Time (hours)	Inflow Rate (ft³/s)	Outside Recharge (ft/day)	Stage Elevation (ft datum)	Infiltration Rate (fl³/s)	Overflow Discharge (ft³/s)	Cumulative Inflow Volume (fl³)	Cumulative Infiltration Volume (ft²)	Cumulative Discharge Volume (fl³)	Flow Type
0.000	4138.2000	0.0000	19.610	0.00000	0.00000	0.0	0.0	0.0	N.A.
0.002	4138.2000	0.0000	22.631	0.35443	0.00000	24829.2	2.1	0.0	U/P
2.400	0.0000	0.0000	22.555	0.35443	0.00000	24829.2	3062.2	0.0	U/P
6.000	0.0000	0.0000	22.440	0.35443	0.00000	24829.2	7655.6	0.0	U/P
.12.000	0.0000	0.0000	22.246	0.30973	0.00000	24829.2	15311.2	0.0	U/P
24.000	0.0000	0.0000	21.957	0.11016	0.00000	24829.2	24829.2 🔭	0.0	U/S
[*] 36.000	0.0000	0.0000	21.840	0.00000	0.00000	24829.2	24829.2	0.0	S
48.000	0.0000	0.0000	21.759	0.00000	0.00000	24829.2	24829.2	0.0	S
60.000	0.0000	0.0000	21.694	0.00000	0.00000	24829.2	24829.2	0.0	S
72.000	0.0000	0.0000	21.640			24829.2	24829.2	0.0	N.A.

* Recovers entire PAU in 24 hours

WATERSHE	CHARACTERISTICS	GO TO S	TORMWA	TER TREA	TEMENT A	NALYSIS	Blue Numbers = Red Numbers =	Input data Calculated or Carryover
SELECT CATC	HMENT CONFIGURATION	CLICK ON C		V TO SELEC		RATION	VIEW CATCHME	NT CONFIGURATION
CATCHMENT NO.1 CHARAC	TERISTICS:	\ f	mixed lan	d uses (sid	e calculatio	n)	OVERWRITE DEFAULT	CONCENTRATIONS USING:
Pre-development land use: with default EMCs Post-development land use:	CLICK ON CELL BELOW TO SEL Single-Family: TN=2.070:TP=0.3 CLICK ON CELL BELOW TO SEL Highway: TN=1.640 TP=0.220	327 .ECT	Land use	Area Acres	non OCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
with default EMCs	inglinay its loogs in total		a Total				CLICK ON CELL	BELOW TO SELECT:
Total pre-development catchn Total post-development catch Pre-development Non DCIA C	ment or BMP analysis area:	6.19 6.19 69.15	AC				USE DEFAULT (CONCENTRATIONS
Pre-development DCIA percel Post-development Non DCIA Post-development DCIA percel	ntage: CN:	0.00 59.35 48.47 1.45	%		Pre-develor Post-develo	oment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus: al Mass Loading - Nitrogen: al Mass Loading - Phosphorus	3.585 kg/year 0.566 kg/year 16,278 kg/year 2.184 kg/year
CATCHMENT NO.2 CHARAC	TERISTICS:	\ If	mixed lan	d uses (sid	e calculatio	n)	OVERWRITE DEFAU	LT CONCENTRATIONS:
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
·			Total				CLICK ON CELL	BELOW TO SELECT:
Total pre-development catchn Total post-development catch Pre-development Non DCIA C	ment or BMP analysis area:		AC AC					CONCENTRATIONS
Pre-development DCIA perce Post-development Non DCIA Post-development DCIA perce Estimated Area of BMP (used	CN:		% % AC		Pre-develo Post-develo	oment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus: at Mass Loading - Nitrogen: at Mass Loading - Phosphorus	kg/year kg/year kg/year kg/year kg/year kg/year
CATCHMENT NO.3 CHARAC		\ H	***************************************	d uses (sid	le calculation			LT CONCENTRATIONS:
Pre-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L
Post-development land use:			Total				CLICK ON CELL	BELOW TO SELECT:
Total pre-development catch Total post-development catch	ment or BMP analysis area:		AC AC					CONCENTRATIONS
Pre-development Non DCIA C Pre-development DCIA perce. Post-development Non DCIA Post-development DCIA perce Estimated Area of BMP (used	ntage: CN:		% % AC		Pre-develo Post-develo	pment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus: at Mass Loading - Nitrogen: at Mass Loading - Phosphorus	kg/year kg/year kg/year kg/year
CATCHMENT NO.4 CHARAC	TERISTICS:	\ If	mixed lar	ıd uses (sid	le calculation	on)	OVERWRITE DEFAU	LT CONCENTRATIONS:
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L
			Total	L				BELOW TO SELECT:
Total pre-development catchn Total post-development catch Pre-development Non DCIA C Pre-development DCIA percel Post-development DCIA percel Post-development DCIA percel	ment or BMP analysis area: N: htage: CN:		AC AC % AC		Pre-develor Post-develo	oment Annual	Mass Loading - Nitrogen: Mass Loading - Phosphorus: al Mass Loading - Nitrogen: al Mass Loading - Phosphorus	kg/year kg/year kg/year kg/year kg/year

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin F	MADE BY:	СЈН	11/13/13
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/18/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin F / Pond F2 - Suburban Best Fit					
Open Space - Fair Conditions	Astatula (100%)	A	49	3.80	186.20
Impervious (Paved parking, roads, etc.)			98 ·	1.72	168.56
Pond footprint	Astatula	A	49 \	0.99	48.51
<u> </u>			TOTALS	. 6.51	403.27

COMPOSITE CN 61.95

ESTIMATE OF RUNOFF VOLUME

rigency	Design Storm Frequency	(in)	(in)	(in)	(ac-ft)
Agency	Design Storm Frequency	P	S	R	V(R)
CALCULATION TABLE	· (tty	(11)	, 21		(110100 1001
3) DETERMINE RUNOFF VOLUME	G - V(R)>			EA	(acres-feet
		P == rainfall in i			
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S))^2 / (P + 0.8	*S)	(inches)
1) DETERMINE SOIL STORAGE - S	>	S = (1000 / C)	1) - 10		(inches)

worksheet: PRE CN

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION: .	Basin F	MADE BY:	Сін	11/13/13
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04/14/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin F / Pond F2 - Suburban Best Fit					
Open Space - Fair Conditions	Astatula (100%)	A	49 (1.84	90.16
Impervious (Paved parking, roads, etc.)			98 -	3.68	360.64
Pond pervious area	Astatula	A	49 .	0.99	48.51
			TOTALS	. 6.51	499.31

COMPOSITE CN	76.70

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) 2) DETERMINE RUNOFF - R ----> $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE Design Storm Frequency P S R V(R) Agency (in) (in) (in) (ac-ft) SJRWMD Open Basin 3 yr / 24 hr 5.60 3.04 3.10 1.68 10 yr / 24 hr 3.04 4.78 SJRWMD Open Basin 7.50 · 2.60 8.60 3.04 5.79 3.14 SJRWMD Open Basin 25 yr / 24 hr

worksheet: POST CN

URS MADE BY: ÐTL DATE: 11/13/13 PROJECT NO.: 240216-4-28-1 75EF CHECKED BY: DATE: 04130/14 BASIN: Basin F CALCULATIONS FOR: SR 46 PD&E POND: F2 Water Quality Total Basin Arca = 6.51 ac 3.68 ac Paved Area = Off-Line Dry Retention 0.50 " Over Total Basin Area = 0.27 Ac-Ft В, 1.25 " Over Paved Area = 0.38 Ac-Ft Required PAV for off-line retention = 0.38 Ac-Ft On-Line Dry Retention 0.50 "Over Total Basin Area + Required off-line PAV = 0.65 Ac-Ft Required Attenuation (Post - Pre) = 0.70 Ac-Ft 3yr / 24hr Required Attenuation (Post - Pre) = 0.88 Ac-Ft 10yr / 24hr Required Attenuation (Post - Pre) = 0.96 Ac-Ft 25yr / 24hr Required Treatment Vol. + Attenuation Vol. = 1.62 Ac-Ft 25yr / 24hr SJRWMD Open basin 1.35 Ac-Ft Required Treatment Vol. + Stormsewer Attenuation Vol. = 3yr / 24hr closed system Stage Storage Calculations

	AREA	AVG AREA	Delța D	Delta storage	Sum Storage	
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
26.00	Pond R/W (1:2 max slope tie down)	1.07				
28.00	Out Berm	0.99				4.82
			0.86	1.00	0.86	
27.00	Inside Berm	0.73				3.96
			0.70	1.00	0.70	
26.00	Provided Treatment Vol. +	0.67				3.26
	Attenuation Vol.		0.59	2.79	1.64	
23.21	Required Treatment Vol. +	0.51				1.62
	Attenuation Vol.		0.49	0.53	0.26	
22.68	Estimated Stormsewer	0.48				1.35
	Tailwater		0.43	1.64	0.70	
21.04	Required Treatment Vol.	0.38				0.65
	(PAV)		0.38	0.04	0.02	
21.00		0.38				0.64
			0.32	2.00	0.64	
19.00	Bottom	0.26				

Required Treatment Vol. + Attenuation Vol. = 1.62 Ae-Ft Provided Treatment Vol. + Attenuation Vol. = 3.26 Ae-Ft Required Treatment Vol. + Attenuation Stage = 23.21 Ft Provided Treatment Vol. + Attenuation Stage = 26.00 Ft

Required Treatment Vol. + Stormsewer Attenuation Vol. =

Estimated Stormsewer Tailwater Elevation =

1.35 Ac-Ft 22.68 Ft

Additional 20% of Pond R/W = 1.28 ac

URS			
MADE BY: CJH	DATE:	11/13/13	PROJECT NO.: 240216-4-28-1
CHECKED BY:	DATE:	8418014	
PROJECT: SR 46 PD&E	POND:	F2	BASIN: Basin F
Hydraulic Grad	de Line Clearance Cald	ulations	
Try drawno ara-	ac Eme Olearanee Oale	MIMIONO	
1) Estimated tailwater elevation in the pond (for prel	iminary storm sewer design)	=	22.68 ft
,		'	
2) Calculation of post-development area for HGL ch	eck		
2 , 3 3 3 3 3 3 3 3 3 3			
Baseline From Station To Station Length	gth (ft) Roadway width (ft)	Area (ac)	
	Total		
or see calcs attached	5.52 ac		
3) Lowest gutter elevation in Basin for HGL check			
-, · · · · · · · · · · · · · · · · ·			
Station 310+52			
Baseline CL46	•		
Offset (ft) 34.50			
Elevation (ft) 25.90			
4) Allowable Head Loss = lowest gutter el - est. tailw	/ater el =	3.22	ft
5) Pipe length from Pond to lowest gutter point =	500 f	t	
6) Rational Method for contributing runoff - Q=CiA	7) Estimation of Pipe	Size	
o) Hational Method for Contabating fullon - Q=O//) Lountation of type	OLO	
C = 0.70	$HL = [4.61*(n^2)*L*(0)]$	Q^2)]/(D^5.33) + K(V^2)/2g
int. = 6.50 in/hr		,	
A = 5.52 ac	HL = Allowable Head		2.56 trial
Q = 25.12 cfs	n = Manning's n		<actual -="" hl="" ok<="" td=""></actual>
Manning's n = 0.012	L = Length (ft) Q = Runoff (cfs)		
Sum K = 2.39	D = Pipe diameter (ft)	
V = 5.12 fps	K = coefficient for mi		
<u> </u>	V = pipe velocity (fps		
	g = gravitational cons	stant (32.2 ft/s	ec^2)
8) Estimated Pipe Diameter to satisfy the conditions	= 2.5 ft	<u>,</u>	
of Estimated Tipe Diameter to satisfy the conditions	- 2.5 iii		

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin F	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/18/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin F / Pond F3- Suburban Best Fit					
Open Space - Fair Conditions	Astatula (100%)	A	49 ·	3.80	186.20
Impervious (Paved parking, roads, etc.)			98 ·	1.72	168.56
Pond footprint	Astatula	A	49 `	0.99	48.51
	<u></u>		TOTALS	6.51	403.27

COMPOSITE CN	· 61.95

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUN	OFF VOLUME IS BASED ON THE	SCS EQUATION	A SI DNA NC	S FOLLOWS	;
1) DETERMINE SOIL STORAGE - S	>	S = (1000 / C	N)-10		(inches)
2) DETERMINE RUNOFF - R	>	R = (P - 0.2*S)	S)^2 / (P + 0.8°	* S)	(inches)
		P = rainfall in	inches		
3) DETERMINE RUNOFF VOLUME -	· V(R)	$\mathbf{V}(\mathbf{R}) = (\mathbf{R} / 12)$	2)*BASIN AR	EA	(acres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
· · ·		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60	6.14	1.82	0.99
SJRWMD Open Basin	10 yr / 24 hr	7.50 ·	6.14	3.17	1.72
SJRWMD Open Basin	25 yr / 24 hr	8.60	6.14	4.02	2.18

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin F	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	D€P	04/18/14

	SOIL .	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin F / Pond F3- Suburban Best Fit					
Open Space - Fair Conditions	Astatula (100%)	A	49 '	1.84	90.16
Impervious (Paved parking, roads, etc.)			98 '	3.68	360.64
Pond pervious area	Astatula	A	49 '	0.99	48.51
		***************************************	TOTALS	. 6.51	499.31

COMPOSITE CN	• 76.70
	1

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: S = (1000 / CN) - 10(inches) 1) DETERMINE SOIL STORAGE - S 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches (aeres-feet) CALCULATION TABLE V(R) R Design Storm Frequency P S Agency (in) (in) (in) (ac-ft) SJRWMD Open Basin 3 yr / 24 hr 5.60 · 3.04 3.10 1.68 SJRWMD Open Basin 10 yr / 24 hr 7.50 • 3.04 4.78 2.60 SJRWMD Open Basin 25 yr / 24 hr 8.60 . 3.04 5.79 3.14

worksheet: POST CN

URS MADE BY: DTL DATE: 02/25/14 PROJECT NO.: 240216-4-28-1 DAT DATE: 04/20/4 CHECKED BY: CALCULATIONS FOR: SR 46 PD&E POND: F3 BASIN: Basin F Water Quality Total Basin Area = 6.51 ac 3.68 ac Paved Area =

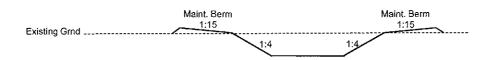
Off-Line Dry Retention

A. 0.50 "Over Total Basin Area = 0.27 Ac-Ft

B. 1.25 "Over Paved Area = 0.38 Ac-Ft

Required PAV for off-line retention = 0.38 Ac-Ft

On-Line Dry Retention


Required Treatment Vol. + Stormsewer Attenuation Vol. = 1.35 Ac-Ft 3yr / 24hr closed system

Stage Storage Calculations

	ELEV.	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
	(ft)	(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
34.00	Pond R/W (1:2 max slope tie down)	1.24				
28.00	Out Berm	0.99				4.41
			0.85	1.00	0.85	
27.00	Inside Berm	0.70				3.56
			0.67	1.00	0.67	
26.00	Provided Treatment Vol. +	0.64				2.89
ļ	Attenuation Vol.	[0.56	2.25	1.27	
23.75	Required Treatment Vol. +	0.49				1.62
	Attenuation Vol.	[0.47	0.57	0.27	
23.18	Estimated Stormsewer	0.46				1.35
	Tailwater	l í	0.40	1.74	0.70	
21.44	Required Treatment Vol.	0.35				0.65
	(PAV)	[[0.33	0.44	0.15	
21.00		0.32				0.51
		<u> </u>	0.25	2.00	0.51	
19.00	Bottom	0.19				

Required Treatment Vol. + Attenuation Vol. = 1.62 Ac-Ft Provided Treatment Vol. + Attenuation Vol. = 2.89 Ac-Ft Required Treatment Vol. + Attenuation Stage = 23.75 Ft Provided Treatment Vol. + Attenuation Stage = 26.00 Ft

Required Treatment Vol. + Stormsewer Attenuation Vol. = 1.35 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 23.18 Ft

Additional 20% of Pond R/W = 1.49 ac

filename: Basin F3_suburban_best_fit.xls

worksheet: POND CALC. URS - Orlando

_	RS MADE BY: CHECKED BY: PROJECT:	DTL DEP SR 46 PD&E			DATE: DATE: POND:	02/25/14 04 (30/14 F3	PROJECT NO.: 240216-4-28-1 BASIN: Basin F
	1) Estimated tailw	vater elevation in	•		ne Clearance Cal ∠storm sewer desigr		23.18 ft
	Calculation of	post-developme	nt area for H0	GL check			
	Baseline	From Station	To Station		Roadway width (ft)	. Area (ac)]
	L				Total		_
		or see calcs at	tached	5.52	ac		
	3) Lowest gutter (elevation in Basi	in for HGL che	eck			
	o) Loncot ganor (Station	310+52				
		Baseline Offset (ft) Elevation (ft)	CL46 34.50 25.90				•
	4) Allowable Head	d Loss = lowest	gutter el - est	. tailwater el	= [2,72]tt
	5) Pipe length from	m Pond to lowes	st gutter point	=	470	ft	
	6) Rational Metho	d for contributin	g runoff - Q=0	CiA	7) Estimation of Pip	e Size	
	C = int. =				HL = [4.61*(n^2)*L*	(Q^2)]/(D^5.33	3) + K(V^2)/2g
	A = Q =	5.52 25.12	ac		HL = Allowable Hea n = Manning's n L = Length (ft)	id Loss (ft)	2.46 trial - OK
	Manning's n = Sum K =				Q = Runoff (cfs) D = Pipe diameter ((1)	
	V =	5.12	fps		K = coefficient for m V = pipe velocity (fp g = gravitational cor	inor losses s)	sec^2)
	8) Estimated Pipe	Diameter to sa	tisfy the condi	tions =	2.5 30		

Project Data

Project Name:

SR 46 PD&E

Simulation Description:

Pond F: Volume below the weir elevation has been used as a stug load

Project Number:

Engineer:

DTL

Supervising Engineer:

Date:

11-19-2013

Aquifer Data

Base Of Aquifer Elevation, [B] (ft datum):

5.00

Water Table Elevation, [WT] (ft datum):

16.00

Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day):

11.20

Proliminary Roadway Soil Survey
108 E Study For SR 46
Ardanan & Nesse , Inc.

Fillable Porosity, [n] (%):

25.00

Information obtained from

Unsaturated Vertical Infiltration Rate, [Iv] (ft/day):

11.2

Maximum Area For Unsaturated Infiltration, [Av] (ft2):

11532.7

Geometry Data

Equivalent Pond Length, [L] (ft):

206.0

Equivalent Pond Width, [W] (ft):

56.0

Ground water mound is expected to intersect the pond bottom

Stage vs Area Data

Stage (ft datum)	Area (ft²)
19.00	11532.7
27.00	31627.7
28 00	43262.1

Scenario Input Data

Scenario 1 :: 28314 ft3 slug load

Hydrograph Type: Modflow Routing:

Slug Load Routed with infiltration

Treatment Volume (ft³)

28314

Initial ground water level (ft datum) default, 16.00

Time After Storm Event (days)	Time After Storm Event (days)
0.100	2.000
0.250	2.500
0.500	3.000
1.000	
1.500	

Detailed Results :: Scenario 1 :: 28314 ft³ slug load

Elapsed Time (hours)	Inflow Rate (ft³/s)	Outside Recharge (ft/day)	Stage Elevation (ft datum)	Infiltration Rate (ft³/s)	Overflow Discharge (ft³/s)	Cumulative Inflow Volume (ft³)	Cumulative Infiltration Volume (ft³)	Cumulative Discharge Volume (ft³)	Flow Type
0.000	4719.0000	0.0000	16.000	0.00000	0.00000	0.0	0.0	0.0	N.A.
0.002	4719.0000	0.0000	21.013	1.49499	0.00000	28314.0	9.0	0.0	U/P
2.400	0.0000	0.0000	20.175	0.99279	0.00000	28314.0	13033.0	0.0	U/S
6.000	0.0000	0.0000	19.976	0.18719	0.00000	28314.0	15868.1	0.0	S
12.000	0.0000	0.0000	19.764	0.11829	0.00000	28314.0	18775.3	0.0	S
24.000	0.0000	0.0000	19.481	0.07437	0.00000	28314.0	22476.5	0.0	S
36.000	0.0000	0.0000	19.262	0.05650	0.00000	28314.0	25200.5	0.0	S
,48.000	0.0000	0.0000	19.082	0.03604	0.00000	28314.0	27357.9	0.0	S
¥60.000	0.0000	0.0000	18.813	0.01107	0.00000	28314.0	28314.0	0.0	S
72.000	0.0000	0.0000	18.497			28314.0	28314.0	0.0	N.A.

* Recovers entire PAU in Go Louis.

WATERSHED	CHARACTERISTICS	GOTOS	TORMWA	TERTREA	TEMENT A	NALYSIS	Blue Numbers = Red Numbers =	Input data Calculated or Carryover		
SELECT CATC	HMENT CONFIGURATION	CLICK ON C		v TO SELEC	*******************	JRATION	VIEW CATCHMEN	CONFIGURATION		
CATCHMENT NO.1 CHARAC	· - · · · · · · · · · · · · · · · · · ·			and uses (side calcul			ONCENTRATIONS USING:		
ļ	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:		
Pre-development land use:	Indeveloped / Rangeland / Forest: TN=1	150 TP=0.5	<u> </u>				EMC(N): mg/L EMC(P): mg/L	mg/L mg/L		
with default EMCs	CLICK ON CELL BELOW TO SEL Highway: TN=1.640 TP=0.220		31 .				EMC(P):	mg/L		
Post-development land use: with default EMCs	Highway: TN=1.640 TP=0.220	•	Total		 		CLICK ON CELL BELOW TO SELECT:			
Total pre-development catchin	nent area:	6.51	AC '		<u> </u>	l				
Total post-development catchi			AC,				USE DEFAULT CO	UNCENTRATIONS		
Pre-development Non DCIA C		61.9								
Pre-development DCIA percer		0:00	%				al Mass Loading - Nitrogen:	1.334 kg/year		
Post-development Non DCIA	CN:	49.00			Pre-develo	pment Annua	al Mass Loading - Phosphorus:			
	Post-development DCIA percentage:		% •		Post-devel	opment Annu	ıal Mass Loading - Nitrogen:	21.577 kg/year		
Estimated Area of BMP (used	for rainfall excess not loadings)	0.99	AC ∗		Post-devel	opment Annu	ial Mass Loading - Phosphorus			
CATCHMENT NO.2 CHARAC	TERISTICS:	1	If mixed I:	and uses (side calcul	ation)	OVERWRITE DEFAUL	T CONCENTRATIONS:		
	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:		
Pre-development land use:							EMC(N): mg/L	mg/L		
To do to	CLICK ON CELL BELOW TO SEL	ECT	1				EMC(P): mg/L	mg/L		
Post-development land use:			Š.		[
•			Total		<u> </u>	L	CLICK ON CELL BI	ELOW TO SELECT:		
Total pre-development catchin							USE DEFAULT CO	ONCENTRATIONS		
Total post-development catchi			AC							
Pre-development Non DCIA C			4		L		And the Property of the Alexander			
Pre-development DCIA percer			3 %				al Mass Loading - Nitrogen:	kg/year		
Post-development Non DCIA			3 .,				al Mass Loading - Phosphorus:			
Post-development DCIA perce			% AC				ial Mass Loading - Nitrogen: ial Mass Loading - Phosphorus	kg/year kg/year		
	for rainfall excess not loadings)		3				· · · · · · · · · · · · · · · · · · ·	T CONCENTRATIONS:		
CATCHMENT NO.3 CHARAC		١	**		(side calcu					
	CLICK ON CELL BELOW TO SEL	ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE:	POST:		
Pre-development land use:							EMC(N): mg/L	mg/L		
	CLICK ON CELL BELOW TO SEL	_ECT	_				EMC(P): mg/L	mg/L		
Post-development land use:			a Total			— ,	CLICK ON CELL BI	ELOW TO SELECT:		
		P/8000000000000000000000000000000000000	I Otal			L				
Total pre-development catching Total post-development catching		-	AC				USE DEFAULT CO	ONCENTRATIONS		
Pre-development Non DCIA C			370							
Pre-development DCIA percei			%		Pre-develo	oment Annu:	al Mass Loading - Nitrogen:	ko/year		
Post-development Non DCIA			3 70				al Mass Loading - Phosphorus:			
Post-development DCiA perce			%				rai Mass Loading - Nitrogen:	kg/year		
Estimated Area of BMP (used	for rainfall excess not loadings)		AC				al Mass Loading - Phosphorus			
CATCHMENT NO.4 CHARAC		١	If mixed	land uses	(side calcu			T CONCENTRATIONS:		
		mom	· · · · · · · · · · · · · · · · · · ·		non DCIA CN	WDCIA	PRE:	POST:		
Dre development land ::==:	CLICK ON CELL BELOW TO SEL	_EU	Land use	Area Acros	HOR DELA CN	WDUM	EMC(N): mg/L	mg/L		
Pre-development land use:	CLICK ON CELL BELOW TO SEL	FCT	*		 		EMC(P): mg/L	ma/L		
Post-development land use:	CLION ON VELLE DELOW TO GET		1							
ttt to to opinion, isna doo.			Total			ļ .	CLICK ON CELL BI	ELOW TO SELECT:		
Total pre-development catching			AC				USE DEFAULT CO	ONCENTRATIONS		
Total post-development catch			AC							
Pre-development Non DCIA C			4		l		-(Marca) and disc. Midage			
Pre-development DCIA percei			3%		Pre-develo	pment Annua	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus:	kg/year kg/year		
Post-development Non DCIA			0/				ai mass Loading - Priospriorus: Jai Mass Loading - Nitrogen:	kg/year		
Post-development DCIA perce			% AC				rai mass Loading - Nitrogeri. rai Mass Loading - Phosphorus			
Esimated Area of BMP (USed	for rainfall excess not loadings)	55000000000000000000000000000000000000	SITIU		I OSCOCVE	ANTIDER VIOL	to moss continue i mospitorus	INSTRUCT		

Bite Numbers Input data Red Numbers Calculated or Carryover	GO TO STORMWATER TREATMENT ANALYSIS	Catchment 2 Catchment 3 Catchment 4 ERROR MESSAGE WINDOW FOR SINGLE RETENTION BASIN.	%		0.000		- FREEBOARD BETWEEN EOE AND TOB		0.000 0.000		SAFETY STATE.		000:0	NOTE FOR TREATEMENT EFFICIENCY GRAPH:	A AN A A	-	The purpose of this graph is to help illustrate the treatment efficiency of the retention of retention depth for a single	BMP and in a single catchment. The graph illustrates that there is a deminished return as the retaining dark is increased. Thus availuationed		should be considered. TYPICAL CROSS SECTION OF A "DRY" RETENTION SYSTEM			View Media Mixes	_	Source of Gra	nent 3 Catchment 4
RETENTION BASIN:	RETENTION BASIN SERVING:	Waterchad area:	ent Eff (Nitrogen):	shed to meet required efficiency:		RETENTION BASIN FOR MULTIPLE TREATMENT SYSTEMS (use only if there is a need for additional removal efficiencies in a series of BMPs):		watershed area):		3):		Remaining treatment efficiency (Phosphorus): Remaining refertion death peopled:		■ System Efficiency (N \$ P) CAT 2: System Efficiency (N \$ P) CAT 2: System Efficiency (N \$ P) CAT 3:	001	70	09	70	36		0 10	0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00	Retention depth (inch):			Learning media mix as a filter before water enters the ground, specify type

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin G	MADE BY:	DTL	11/18/13
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	D€.P	04/18/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin G / Pond G2 - Suburban Best Fit					
		-			
Open Space - Fair Conditions	Astatula (100%)	A	49 (8.62	422.38
Impervious (Paved parking, roads, etc.)			98	3.96	388.08
Pond footprint	Astatula	A	49 ,	2.33	114.17
			TOTALS	• 14.91	924.63

COMPOSITE CN	· 62.01

ESTIMATE OF RUNOFF VOLUME

DETERMINE CON COUNTY		0 (1000 (0)	() 10		<i>(*</i> 1)		
1) DETERMINE SOIL STORAGE - S	3>	S = (1000 / Ch	1)-10		(inches)		
2) DETERMINE RUNOFF - R		R = (P - 0.2*S)	(inches)				
	P = rainfall in inches						
1							
3) DETERMINE RUNOFF VOLUMI	3 - V(R)>	V(R) = (R/12))*BASIN AR	EA	(acres-feet)		
3) DETERMINE RUNOFF VOLUMI CALCULATION TABLE	E- V (R)>	V(R) = (R/12))*BASIN AR	E A	(acres-feet)		
,	Design Storm Frequency	V(R) = (R/12)*BASIN AR	EA R	(acrcs-fcct)		
CALCULATION TABLE							
CALCULATION TABLE		P	S	R	V(R)		
CALCULATION TABLE Agency	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)		

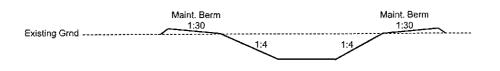
URS									
PROJECT TITLE:	SR 46 PD&E								
PROJECT NUMBER:	240216-4-28-1			DATE					
BASIN DESIGNATION:	Basin G	MADE BY:	DTL	11/18/13					
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04/18/14					

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin G / Pond G2 - Suburban Best Fit					
Open Space - Fair Conditions	Astatula (100%)	A	49 ,	3.75	183.52
Impervious (Paved parking, roads, etc.)			98	8.83	865.46
Pond pervious area	Astatula	Α	49 ·	2.33	114.17
			TOTALS	14.91	1163.15

COMPOSITE CN	78.03

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE Design Storm Frequency P S R V(R) Agency (in) (in) (in) (ac-ft) 5.60 4.01 SJRWMD Open Basin 3 yr / 24 hr 2.82 3.23 4.93 10 yr / 24 hr 2.82 6.13 SJRWMD Open Basin 7.50 → 25 yr / 24 hr 8.60 2.82 5.95 7.39 SJRWMD Open Basin


eet: POST CN URS - Oriando

URS PROJECT NO.: 240216-4-28-1 MADE BY: DTLDATE: 11/18/13 CHECKED BY: DET DATE: 04/30/14 SR 46 PD&E POND: G2 BASIN: Basin G CALCULATIONS FOR: Water Quality 14.91 ac Total Basin Area = Paved Area = 8.83 ac Off-Line Dry Retention 0.50 " Over Total Basin Area = 0.62 Ac-Ft B, 1.25 " Over Paved Area = 0.92 Ac-Ft 0.92 Ac-Ft Required PAV for off-line retention = On-Line Dry Retention 0.50 " Over Total Basin Area + Required off-line PAV =1.54 Ac-Ft 1.54 Ac-Ft Required On-Line Treatment (PAV) = Required Attenuation (Post - Pre) = 1.75 Ac-Ft 3yr / 24hr 2.18 Ac-Ft 10yr / 24hr Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) = 2.39 Ac-Ft 25yr / 24hr Required Treament Vol. + Attentuation Vol. = 3.93 Ac-Ft 25yr / 24hr SJRWMD Open Basin 3.29 Ac-Ft Required Treatment Vol. + Stormsewer Attentuation Vol. = 3yr / 24hr closed system Stage Storage Calculations

ELEV.	Description	AREA	AVG AREA	Delta D	Delta storage	Sum Storage
(ft)		(ac)	(ac)	(ft)	(ac-ft)	(ac-ft)
52.00	Pond R/W (1:2 max slope tie down)	2.63				
47.00	Out Berm	2.33				7.12
			2.12	0.50	1.06	
46.50	Inside Berm	1.91				6.06
			1.86	1.00	1.86	
45.50	Provided Treatment Vol. +	1.81				4.20
	Attentuation Vol.	Г	1,80	0,15	0.27	
45.35	Required Treatment Vol. +	1.79				3.93
	Attentuation Vol.		1.77	0.36	0.64	
44,99	Estimated Stormsewer	1.75				3.29
	Tailwater		1.70	1.03	1.75	
43.96	Required Treatment Vol.	1.65				1.54
	(PAV)		1.60	0.96	1.54	
43.00	Battom	1.55				

Required Treatment Vol. + Attentuation Vol. = 3.93 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 4.20 Ac-Ft Required Treatment Vol. + Attentuation Stage = 45.35 Ft Provided Treatment Vol. + Attentuation Stage = 45.50 Ft

Required Treatment Vol. + Stormsewer Attentuation Vol. = 3.29 Ac-Ft
Estimated Stormsewer Tailwater Elevation = 44.99 Ft

Additional 20% of Pond R/W = 3.16 AC

U,	RS MADE BY: CHECKED BY: PROJECT:	DTL TXFF SR 46 PD&E		, ,	DATE: DATE: POND:	04130114	PROJECT NO.; 240216-4-28-1 BASIN: Basin G				
	Hydraulic Grade Line Clearance Calculations 1) Estimated tailwater elevation in the pond (for preliminary storm sewer design) = 44.99 ft										
	2) Calculation of post-development area for HGL check										
	Baseline	From Station	To Station	Length (ft)	Roadway width (ft)	Area (ac)					
		or POST CN w		12.58	Total						
	3) Lowest gutter	elevation in Basi Station Baseline Offset (ft) Elevation (ft)	326+73 CL46 34.50 46.20	eck							
	4) Allowable Hea	d Loss = lowest	gutter el - est	. tailwater el		1.21]ft				
	5) Pipe length fro				85						
	6) Rational Metho C = int. = A = Q = Manning's n = Sum K = V =	0.73 6.50 12.58 59.40 0.012 2.37	in/hr ac cfs	CiA	7) Estimation of Pip HL = [4.61*(n^2)*L* HL = Allowable Hea n = Manning's n L = Length (ft) Q = Runoff (cfs) D = Pipe diameter (K = coefficient for m V = pipe velocity (fp g = gravitational con	(Q^2)]/(D^5.33 td Loss (ft) ft) hinor losses	0.94 trial · <actual -="" hl="" ok<="" td=""></actual>				
	8) Estimated Pipe	Diameter to sat	isfy the condi	itions =	4.0						

.

URS							
PROJECT TITLE:	SR 46 PD&E						
PROJECT NUMBER:	240216-4-28-1			DATE			
BASIN DESIGNATION:	Basin G	MADE BY:	DTL	02/25/14			
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/18/14			

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin G / Pond G3 - Suburban Best Fit					
	,				
Open Space - Fair Conditions	Astatula (100%)	A	49 -	8.62	422.38
Impervious (Paved parking, roads, etc.)			98 ·	3.96	388.08
Pond footprint	Astatula	A	49 -	2.34	114.66
			TOTALS	- 14.92	925.12

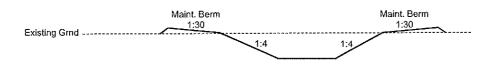
COMPOSITE CN	62.01

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS:							
1) DETERMINE SOIL STORAGE - S	>	S = (1000 / CN	S = (1000 / CN) - 10				
2) DETERMINE RUNOFF - R		R = (P - 0.2*S)	^2/(P+0.8	*S)	(inches)		
		P = rainfall in i	nches				
3) DETERMINE RUNOFF VOLUME - $V(R)$							
CALCULATION TABLE							
Agency	Design Storm Frequency	P (in)	S (in)	R (in)	V(R) (ac-ft)		
SJRWMD Open Basin	3 yr / 24 hr	5.60	6.13	1.82	2.27		
SJRWMD Open Basin	10 yr / 24 hr	7.50 ·	6.13	3.17	3.95		
SJRWMD Open Basin	25 yr / 24 hr	8.60 '	6.13	4.03	5.01		

URS								
PROJECT TITLE: SR 46 PD&E								
PROJECT NUMBER:	240216-4-28-1			DATE				
BASIN DESIGNATION:	Basin G	MADE BY:	DTL	02/25/14				
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04/18/14				

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin G / Pond G3 - Suburban Best Fit					
Open Space - Fair Conditions	Astatula (100%)	A	49 ,	3.75	183.52
Impervious (Paved parking, roads, etc.)			98 •	8.83	865.46
Pond pervious area	Astatula	Λ	49 ،	2.34	114.66
			TOTALS	14.92	1163.64


COMPOSITE CN	78.01

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S ----> S = (1000 / CN) - 10(inches) $R = (P - 0.2*S)^2 / (P + 0.8*S)$ 2) DETERMINE RUNOFF - R ____> (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE Design Storm Frequency P S R V(R) Agency (in) (in) (in) (ac-ft) SJRWMD Open Basin 2.82 3 yr / 24 hr 5.60 3.23 4.01 2.82 4.93 6.13 SJRWMD Open Basin 10 yr / 24 hr 7.50 \ 8.60 2.82 5.95 7.40 SJRWMD Open Basin 25 yr / 24 hr

URS MADE BY: DTL DATE: 02/25/14 PROJECT NO.: 240216-4-28-1 DE.D DATE: 04/30/14 CHECKED BY: CALCULATIONS FOR: SR 46 PD&E POND: G3 BASIN: Basin G Water Quality Total Basin Area = 14.92 ac 8.83 ac Payed Area = Off-Line Dry Retention 0.50 " Over Total Basin Area = 0.62 Ac-Ft A. 0.92 Ac-Ft 1.25 " Over Paved Area = В. Required PAV for off-line retention = 0.92 Ac-Ft On-Line Dry Retention 1.54 Ac-Ft 0.50 " Over Total Basin Area + Required off-line PAV = 1.54 Ac-Ft Required On-Line Treatment (PAV) = 1.75 Ac-Ft 3yr / 24hr Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) = 2.18 Ac-Ft 10yr / 24hr 2.39 Ac-Ft 25yr / 24hr Required Attenuation (Post - Pre) = 3.93 Ac-Ft 25yr / 24hr SJRWMD Open Basin Required Treament Vol. + Attentuation Vol. = Required Treatment Vol. + Stormsewer Attentuation Vol. = 3.29 Ac-Ft 3yr / 24hr closed system Stage Storage Calculations ELEV. AREA AVG Delta Delta Sum Description AREA D storage Storage (ac-ft) (ac) (ft) (ac-ft) (ft) (ac) 56.00 Pond R/W 2,91 (1:2 max slope tie down) Out Berm 2.34 6.99 47.00 2.12 0.50 1.06 46.50 Inside Berm 1.89 5.93 1.83 1.00 1.83 45.50 1.78 4.10 Provided Treatment Vol. 4 1,77 0.10 0.17 Attentuation Vol. 45.40 1.77 3.93 Required Treatment Vol. + 1.75 0.36 Attentuation Vol. 0.64 1,73 3.29 45.04 Estimated Stormsewer 1.05 1.75 Tailwater 1.67 1.54 43.99 Required Treatment Vol. 1.61 1.54 (PAV) 1.56 0.99 43.00 1.50 Bottom Required Treatment Vol. + Attentuation Vol. = 3.93 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 4.10 Ac-Ft 45.40 Ft Provided Treatment Vol. + Attentuation Stage = 45.50 Ft Required Treatment Vol. + Attentuation Stage =

Required Treatment Vol. + Stormsewer Attentuation Vol. = Estimated Stormsewer Tailwater Elevation =

3.29 Ac-Ft 45.04 Ft

Additional 20% of Pond R/W = 3.49 AC

U	RS							
-	MADE BY:	DTŁ				DATE:	02/25/14	PROJECT NO.: 240216-4-28-1
	CHECKED BY:	DEP				DATE:	04130114	
	PROJECT:	SR 46 PD&E				POND:	G3	BASIN: Basin G
			Hydraulic	Grada Lir	no Clearan	re Calc	endations	
			Tryuraunc	CHACLE LIE	ie Giearain	ve Valu	MIRTOLIS	
	1) Estimated tailv	vater elevation i	n the pond (fo	r <u>preliminan</u>	y storm sewe	r design)) =	45.04 ft
	2) Calculation of	nost-developme	nt area for HO	GL check				
	2) 34/04/44/5/	post de l'elephine						_
	Baseline	From Station	To Station	Length (ft)	Roadway w	idth (ft)	Area (ac)	
İ						1		4
						1		
						Total]
		or POST CN v	orkshoot	12.58	lac			
		011001011	Olkallect	12.00	Дао			
	3) Lowest gutter	elevation in Bas	in for HGL ch	eck				
		Station	326+73	1				
		Baseline	CL46					
		Offset (ft)	34.50]				
		Elevation (ft)	46.20	}				
	4) Allowable Hea	d Loss = lowest	autter el - est	. tailwater e	l =	Γ	1.16	5]ft
	,		•					ne d
	5) Pipe length fro	m Pond to lowe	st gutter point	=		105 f	f	
	O) Dational Mathe	سائد بمانیشید بر ما	a minott O	OLA.	7) Estimation	n of Dina	. Ciao	
	Rational Metho	od for contributir	ig runon - Q≕	O!A	// Estimation	ii oi ripe	; JIZE	
	C =	0.73			HL = [4.61*(n^2)*L*(Q^2)]/(D^5.33	3) + K(V^2)/2g
	int. =		in/hr					
	A =	j			HL = Allowa		d Loss (ft)	- 0.97 trial
	Q =	59.40	cis		n = Manning L = Length (<actual -="" fl="" or<="" td=""></actual>
	Manning's n =	0.012			Q = Runoff (
	Sum K =	2.37			D = Pipe dia	meter (fl		
	V =	4.73	fps		K = coefficie			
					V = pipe velo		s) stant (32.2 ft/	(eec/2)
					y = yravitatit	onai COII	olani (OZ.Z IV	360 21
	8) Estimated Pipe	Diameter to sa	tisfy the cond	itions =		4.0 f	t	
						48 i	n	

.

Project Data

Project Name:

SR 46 PD&E

Simulation Description:

Pond G: Volume below the weir elevation has been used as a slug load

Project Number:

Engineer:

DTL

Supervising Engineer:

Date:

11-18-2013

Aquifer Data

Base Of Aquifer Elevation, [B] (ft datum):

28.93

Water Table Elevation, [WT] (ft datum):

40.43

. . . .

Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day):

10.00

Preliminary Roadway Soil Survey PD&E Study for SA46 Ardaman & ASSOC., Inc.

Information obtained from

Fillable Porosity, [n] (%):

25.00 10.0

Unsaturated Vertical Infiltration Rate, [Iv] (ft/day):

Maximum Area For Unsaturated Infiltration, [Av] (ft2):

67588.5

Geometry Data

Equivalent Pond Length, [L] (ft):

372.0

Equivalent Pond Width, [W] (ft):

182.0

Ground water mound is expected to intersect the pond bottom

Stage vs Area Data

Stage (ft datum)	Area (ft²)
43.00	67588.5
46.50	83353.1
47 00	101610.4

Scenario Input Data

Scenario 1 :: 67082.4 ft3 slug load

Hydrograph Type: Modflow Routing:

Slug Load Routed with infiltration

Treatment Volume (ft³)

67082.4

Initial ground water level (ft datum) default, 40.43

Time After	Time After
Storm Event	Storm Event
(days)	(days)
0.100	2.000
0.250	2.500
0.500	3.000
1,000	
1.500	

Detailed Results :: Scenario 1 :: 67082.4 ft³ slug load

Elapsed Time (hours)	Inflow Rate (ft³/s)	Outside Recharge (ft/day)	Stage Elevation (ft datum)	Infiltration Rate (ft³/s)	Overflow Discharge (ft³/s)	Cumulative Inflow Volume (ft³)	Cumulative Infiltration Volume (ft³)	Cumulative Discharge Volume (fl³)	Flow Type
0.000	11180,4000	0.0000	40.430	0.00000	0.00000	0.0	0.0	0.0	N.A.
0.002	11180.4000	0.0000	43.961	7.82126	0.00000	67082.4	46.9	0.0	U/P
2,400	0.0000	0.0000	43.263	3.53429	0.00000	67082.4	49177.6	0.0	U/S
6.000	0.0000	0.0000	43.206	0.25751	0.00000	67082.4	53038.6	0.0	S
12.000	0.0000	0.0000	43.146	0.16940	0.00000	67082.4	57146.2	0.0	S
24,000	0.0000	0.0000	43.065	0.11352	0.00000	67082.4	62669.6	0.0	S
36,000	0.0000	0.0000	43.002	0.05107	0.00000	67082.4	66954.5	0.0	S
¾ 48.000	0.0000	0.0000	42.831	0.00148	0.00000	67082.4	67082.4	0.0	S
60.000	0.0000	0.0000	42.692	0.00000	0.00000	67082.4	67082.4	0.0	S
72.000	0.0000	0.0000	42.577			67082.4	67082.4	0.0	N.A.

* Recovers the entire PAV in 48 hours.

WATERSHED	CHARACTERISTICS	GO TO S	TORMWA	TER TREA	TEMENT A	NALYŞIS	Blue Numbers = Red Numbers =	Input data Calculated or Carryover	
SELECT CATC	HMENT CONFIGURATION	CLICK ON C			CT CONFIGL	JRATION	VIEW CATCHMENT CONFIGURATION		
CATCHMENT NO.1 CHARAC	TERISTICS:	١	If mixed la	and uses (side calcul	ation)	OVERWRITE DEFAULT (CONCENTRATIONS USING:	
Pre-development land use:	CLICK ON CELL BELOW TO SEL Single-Family: TN=2.070 TP=0: CLICK ON CELL BELOW TO SEL	327 .ECT	Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L	
Post-development land use: with default EMCs	Highway: TN=1:640 TP=0:22	9	Total				CLICK ON CELL E	BELOW TO SELECT:	
Total pre-development catcher Total post-development catcher Pre-development Non DCIA C	ment or BMP analysis area:	14.91 14.91 62.01	AC				USE DEFAULT C	ONGENTRATIONS	
Pre-development DCIA percer Post-development Non DCIA of Post-development DCIA perce	ntage: CN:	0:00 49:00 59:22 2:33	% %		Pre-develo Post-devel	pment Annua	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus al Mass Loading - Nitrogen: al Mass Loading - Phosphoru:	51.456 kg/year	
CATCHMENT NO.2 CHARAC					side calcul			LT CONCENTRATIONS:	
Pre-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L	
Post-development land use:			Total				CLICK ON CELL E	BELOW TO SELECT:	
Total pre-development catchm Total post-development catch Pre-development Non DCIA C	ment or BMP analysis area:		AC AC				USE DEFAULT O	ONCENTRATIONS	
Pre-development DCIA percer Post-development Non DCIA of Post-development DCIA perce	ntage: CN:		% % AC		Pre-develo Post-devel	pment Annua opment Annu	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus al Mass Loading - Nitrogen; al Mass Loading - Phosphoru:	kg/year	
CATCHMENT NO.3 CHARAC	TERISTICS:	١	if mixed l	and uses	(side calcu	lation)	OVERWRITE DEFAUI	LT CONCENTRATIONS:	
Pre-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA	PRE: EMC(N): mg/L EMC(P): mg/L	POST: mg/L mg/L	
Post-development land use:			§I Total				CLICK ON CELL E	BELOW TO SELECT:	
Total pre-development catcher Total post-development catcher Pre-development Non DCIA C	ment or BMP analysis area:		AC AC	•		·	USE DEFAULT C	ONCENTRATIONS	
Pre-development DCIA percer Post-development Non DCIA (Post-development DCIA perce	ntage: CN:		% % AC		Pre-develo Post-devel	pment Annua	al Mass Loading - Nitrogen: al Mass Loading - Phosphorus al Mass Loading - Nitrogen: al Mass Loading - Phosphorus	kg/year	
CATCHMENT NO.4 CHARAC	TERISTICS:	1	If mixed I	and uses	(side calcul	lation)	OVERWRITE DEFAUL	T CONCENTRATIONS:	
Pre-development land use: Post-development land use:	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCtA CN	%DCIA	PRE: EMC(N):mg/L EMC(P):mg/L	POST: mg/L mg/L	
			Total				CLICK ON CELL B	BELOW TO SELECT:	
Total pre-development catchm Total post-development catchi Pre-development Non DCIA C	ment or BMP analysis area:		AC AC		1		USE DEFAULT C	ONCENTRATIONS	
Pre-development DCIA percer Post-development Non DCIA (Post-development DCIA perce	ntage: CN:		% % AC		Pre-develo Post-develo	pment Annua	ll Mass Loading - Nitrogen: Il Mass Loading - Phosphorus: al Mass Loading - Nitrogen: al Mass Loading - Phosphorus	kg/year	

Blue Numbers = Calculated or Carryover	GO TO STORMWATER TREATMENT ANALYSIS	ERROR MESSAGE WINDOW FOR SINGLE RETENTION BASIN:		P\$): TOP OF BANK (TOB) FREEBOARD BE TWEEN EOE AND TOB TOP OF FLODD CONTROL ATTENUATION VOLUME - IF APPLICABLE OVERPELOW WATER ELEVATION (WEIR CREST) REQUIRED TREATMENT VOLUME (RTV) WER CREST WERE CREST WERE CREST OUTFALL	ingle are is a SEASONAL HIGH GROUND WATER TABLE (SHGWT) COMFINING UNIT) TYPICAL CROSS SECTION OF A "DRY" RETENTION SYSTEM Source of Graphic: draft STORMWATER QUALITY APPLICANT'S HANDBOOK dated March Source of Graphic by the Department of Environmental Protection, available at:	http://www.dep.state.fl.us/water/wetlands/erp/rules/stormwater, March 2010. 0.000
IN:	Basin G	1 Catchment 2 Catchment 3 Catchment 4 580 0.000 0.000 0.000 ac 687	0.000 0.000 0.000 0.000	s a need for additional removal efficiencies in a series of BMPs): 3.360		000.0 000.0 000.0
RETENTION BASIN:	RETENTION BASIN SERVING:	Watershed area: 12.580 Required Treatment Eff (Nitrogen): 89.267	ume:	Provided retention depth (inches over the watershed area):	100	If using media mix as a filter before water enters the ground, specify type. Average Nitrogen concentration in the filter effluent entering groundwater in mg/L Average Portrogeners in the filter effluent entering groundwater in mg/L

URS						
PROJECT TITLE:	SR 46 PD&E					
PROJECT NUMBER:	240216-4-28-1			DATE		
BASIN DESIGNATION:	Basin H	MADE BY:	מזנג	11/18/13		
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/18/1A		

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin H / Pond H1 - Urban					
Open Space - Fair Conditions	Astatula (100%)	Α	49 .	4.88	239.12
Impervious (Paved parking, roads, etc.)			98 ·	4.05	396.90
Pond footprint	Astatula	A	49 •	1.98	97.02
			TOTALS	10.91	733.04

COMPOSITE CN · 67.19

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNO	FF VOLUME IS BASED ON THE	e scs equatio	N AND IS A	S FOLLOWS	:
1) DETERMINE SOIL STORAGE - S	>	S = (1000/CN	1)-10		(inches)
2) DETERMINE RUNOFF - R	>	$R = (P - 0.2*S)^2 / (P + 0.8*S)$			(inches)
		P = rainfall in i	nches		
3) DETERMINE RUNOFF VOLUME - V	/(R)>	V(R) = (R/12))*B A SIN AR	EA	(acres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
-		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60 \	4.88	2.25	2.04
SJRWMD Open Basin	10 yr / 24 hr	7.50	4.88	3.73	3.39
SJRWMD Open Basin	25 yr / 24 hr	8.60	4.88	4.65	4.22

URS							
PROJECT TITLE:	SR 46 PD&E	SR 46 PD&E					
PROJECT NUMBER:	240216-4-28-1			DATE			
BASIN DESIGNATION:	Basin H	MADE BY:	DTL	11/18/13			
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04/18/14			

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(nc)	PRODUCT
Basin H / Pond H1 - Urban					
Open Space - Fair Conditions	Astatula (100%)	A	49 ·	1.49	73.01
Impervious (Paved parking, roads, etc.)			98 '	7.44	729.12
Pond pervious area	Astatula	A	49 •	1.98	97.02
			TOTALS	· 10.91	899.15

COMPOSITE CN	82.42
	<u> </u>

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches 3) DETERMINE RUNOFF VOLUME - V(R) ------ V(R) = (R / 12)*BASIN AREA (aeres-feet) CALCULATION TABLE P Design Storm Frequency S R V(R) Agency (in) (in) (in) (ac-ft) 2.13 SJRWMD Open Basin 3 yr / 24 hr 5.60 • 3.66 3.33 2.13 4.94 SJRWMD Open Basin 10 yr / 24 hr 7.50 • 5.43 2.13 6.48 5.89 SJRWMD Open Basin 25 yr / 24 hr 8.60 、

URS MADE BY: DTL DATE: 11/18/13 PROJECT NO.: 240216-4-28-1 CHECKED BY: TEP DATE: 04/30/14 CALCULATIONS FOR: SR 46 PD&E BASIN: Basin H POND: HI Water Quality 10.91 ac Total Basin Area = Paved Area = 7.44 ac Off-Line Dry Retention 0.50 "Over Total Basin Area = 0.45 Ac-Ft Α. 1.25 "Over Paved Area = В. 0.78 Ac-Ft Required PAV for off-line retention = 0.78 Ac-Ft On-Line Dry Retention 1.23 Ac-Ft 0.50 "Over Total Basin Area + Required off-line PAV = 1.23 Ac-Ft Required On-Line Treatment (PAV) = 1.29 Ac-Ft 3yr / 24hr Required Attenuation (Post - Pre) = 1.55 Ac-Ft 10yr / 24hr Required Attenuation (Post - Pre) = Required Attenuation (Post - Pre) = 1.67 Ac-Ft 25yr / 24hr Required Treament Vol. + Attentuation Vol. = 2.90 Ac-Ft 25yr / 24hr SJRWMD Open Basin Required Treatment Vol. + Stormsewer Attentuation Vol. = 2.52 Ac-Ft 3yr / 24hr closed system Stage Storage Calculations ELEV. Description AREA AVG Delta Delta Sum AREA Storage D storage (ft) (ac) (ac) (ft) (ac-ft) (ac-ft) Pond R/W 41.00 241 (1:2 max slope tie down) 1.98 9.57 47.00 **Out Berm** 1.73 1.00 1.73 Inside Berm 1.47 46.00 7.84 1.41 1.00 1.41 1.35 6.43 45.00 Provided Treatment Vol. + Attentuation Vol. 1.16 3.04 3.53 2.90 41.96 Required Treatment Vol. + 0.98 Attentuation Vol. 0.95 0.40 0.38 0.93 2.52 41.56 Estimated Stormsewer Tailwater 0.83 1.56 1.30 40.00 Required Treatment Vol. 0.74 1.23 2.00 1.23 (PAV) 0.61 0.49 38.00 Bottom 2.90 Ac-Ft Required Treatment Vol. + Attentuation Vol. = Provided Treatment Vol. + Attentuation Vol. = 6.43 Ac-Ft Required Treatment Vol. + Attentuation Stage = 41.96 Ft Provided Treatment Vol. + Attentuation Stage = 45.00 Ft Required Treatment Vol. + Stormsewer Attentuation Vol. = 2.52 Ac-Ft Estimated Stormsewer Tailwater Elevation = 41.56 Ft Maint. Berm Maint. Berm 1:15 1:15 Existing Grnd ------1:4 1:4 Additional 20% of Pond R/W = 2.89 AC

JRS .							
MADE BY:	DTL				DATE:	11/18/13	PROJECT NO.: 240216-4-28-1
CHECKED BY PROJECT:	SR 46 PD&E				DATE: POND:	05/12/14 H1	BASIN: Basin H
FROJECT.				······································			D/ (OIN), Dasin II
	<u>F</u>	<u>lydraulic</u>	<u>Grade Lir</u>	<u>ne Clearai</u>	nce Cal	<u>culations</u>	
1) Estimated ta	ilwater elevation in	the pond (fo	r <u>preliminar</u>	y storm sew	er design	n) =	41.56 ft
·							· · · · · · · · · · · · · · · · · · ·
2) Calculation of	of post-developmen	t area for H	GL check				
Baseline	From Station	To Station	Length (ft)	Roadway v	vidth (ft)	Area (ac)]
							<u> </u> -
							- -
					umerece		_
			L.,		Total		-
	or see Post CN v	arkabaat	8.93	1			
	UI See Post CIN	Worksheet	0.93	Jac			
2)	a claudian in Basin	for UCL ob	n old				
3) Lowest guite	r elevation in Basin	IOI HGL CH	ECK				
	Station	400+00					
	Baseline Offset (ft)	CL46 10.00					
	Elevation (ft)	41.90					
4) Allowable He	ead Loss = lowest g	utter el - est	t. tailwater e	! =		0.34]ft
5) Pina lanath f	rom Pond to lowest	autter noint	· 	F	120	ft	•
				<u> </u>			
6) Rational Met	hod for contributing	runoff - Q≕	CiA	7) Estimation	on of Pipe	e Size	
С	= 0.82			HL = [4.61*	'(n^2)*L*(Q^2)]/(D^5.33) + K(V^2)/2g
int. A				HL = Allow	ahla Haa	d Loss (ft)	0.25 trial
Q				n = Mannin		u 1033 (II)	<actual -="" hl="" ok<="" td=""></actual>
				L = Length			
Manning's n Sum K				Q = Runoff D = Pipe di		t)	
V		s		K = coeffici	ent for m	inor losses	
				V = pipe ve		s) stant (32.2 ft/s	sec^2)
				g glatia	,,o,,a, ee,,	otani (oziz io	
9) Estimated Di	na Diameter to esti	efytha aand	itions =	f	5.0	ff	
o) Estimated Fi	pe Diameter to sati	siy the cond	IIIONS –		60 i		
** Please note:	Seminole County	/ Lidar data	indicate ele	vations of th	ne existino	g roadway with	nin this basin to be
	approximately 39	9.5 ft along 5	SR 46. Thus	s, portions o	f the prop	osed roadwa	y profile will need to
	be elevated to ob	otain the low	est gutter e	levation use	d in this l	HGL clearance	e calculation.
							to proposed Pond H1
			nt proposed	roadway im	proveme	nts along SR	46 that can not be
	hydraulically colle	ocieu,					

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin H	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/18/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin H / Pond H2 - Urban					
Open Space - Fair Conditions	Astatula (100%)	A	49 ,	4.88	239.12
Impervious (Paved parking, roads, etc.)			98 ·	4.05	396.90
Pond footprint	Astatula	Λ	49 .	1.95	95.55
			TOTALS	· 10.88	731.57

COMPOSITE CN	٠ 6	7.24

ESTIMATE OF RUNOFF VOLUME

	IODE MONTH AT YOUR LATER ON THE	000 0011	N. 1NIN 10. 1	C POY I OTHE	
PROCEDURE TO DETERMINE RUI	NOFF VOLUME IS BASED ON THE	SCS EQUATIC	IN AND 12 A	s follows	ı:
1) DETERMINE SOIL STORAGE - S	>	S = (1000 / CN	1)-10		(inches)
2) DETERMINE RUNOFF - R	**************************************	$R = (P \cdot 0.2*S)$	^2/(P+0.8	* S)	(inches)
		P = rainfall in i	nches		
3) DETERMINE RUNOFF VOLUME	- V(R)	V(R) = (R / 12))*BASIN AR	EA	(acres-feet)
CALCULATION TABLE					
Agency	Design Storm Frequency	P	S	R	V(R)
- · · · · · · · · · · · · · · · · · · ·		(in)	(in)	(in)	(ac-ft)
SJRWMD Open Basin	3 yr / 24 hr	5.60	4.87	2.25	2.04
SJRWMD Open Basin	10 yr / 24 hr	7.50 ·	4.87	3.74	3.39
SJRWMD Open Basin	25 yr / 24 hr	8.60 1	4.87	4.65	4.22

filename: Basin H2_urban.xls worksheet: PRE CN

URS						
PROJECT TITLE:	SR 46 PD&E					
PROJECT NUMBER:	240216-4-28-1			DATE		
BASIN DESIGNATION:	Basin H	MADE BY:	DTL	02/25/14		
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEP	04/18/14		

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin H / Pond H2 - Urban					
Open Space - Fair Conditions	Astatula (100%)	A	49	1.49	73.01
Impervious (Paved parking, roads, etc.)			98	7.44	729.12
Pond pervious area	Astatula	A	49	1.95	95.55
			TOTALS	. 10.88	897.68

COMPOSITE CN 82.51

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) $R = (P - 0.2*S)^2 / (P + 0.8*S)$ 2) DETERMINE RUNOFF - R (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE V(R) Design Storm Frequency P S R Agency (in) (ac-ft) (in) (in) SJRWMD Open Basin 3 yr / 24 hr 5.60 2.12 3.67 3.33 SJRWMD Open Basin 10 yr / 24 hr 7.50 2.12 5.44 4.94 SJRWMD Open Basin 25 yr / 24 hr 8.60 1 2.12 6.49 5.89

URS MADE BY: DTL DATE: 02/25/14 PROJECT NO.: 240216-4-28-1 CHECKED BY: DEF DATE: OHSOIM BASIN: Basin H CALCULATIONS FOR: SR 46 PD&E POND: H2 Water Quality Total Basin Area ::: 10.88 ac 7.44 ac Paved Area = Off-Line Dry Retention A, 0.50 " Over Total Basin Area = 0.45 Ac-Ft 1.25 " Over Paved Area = 0.78 Ac-Ft B. Required PAV for off-line retention = 0.78 Ac-Ft On-Line Dry Retention 0.50 " Over Total Basin Area + Required off-line PAV == 1.23 Ac-Ft 1.23 Ac-Ft Required On-Line Treatment (PAV) = Required Attenuation (Post - Pre) = 1.29 Ac-Ft 3yr / 24hr Required Attenuation (Post - Pre) = 1.55 Ac-Ft 10yr / 24hr 1.67 Ac-Ft 25yr/24hr Required Attenuation (Post - Pre) = 2.90 Ac-Ft 25yr/24hr SJRWMD Open Basin Required Treament Vol. + Attentuation Vol. = 2.52 Ac-Ft Required Treatment Vol. + Stormsewer Attentuation Vol. = 3yr / 24hr closed system Stage Storage Calculations ELEV. Description AREA AVG Delta Delta Sum AREA Storage D storage (ft) (ac-ft) (ac-ft) (ft) (ac) (ac) 56.00 Pond R/W 2.47 (1:2 max slope tie down) 47.00 Out Berm 1.95 11.15 1.75 1.00 1.75 46.00 Inside Berm 1.55 9.40 1.50 1.00 1.50 45.00 Provided Treatment Vol. + 1.46 7.90 1.27 3.93 5.00 Attentuation Vol. 41.07 Required Treatment Vol. + 1.09 2.90 0.35 0.37 Attentuation Vol. 1.07 40.72 Estimated Stormsewer 1.06 2.52 Tailwater 0.99 1,30 1.29 Required Treatment Vol. 39.42 0.93 1,23 0.87 1.23 1.42 (PAV) 38.00 Bottom 0.80 7.90 Ac-Ft Required Treatment Vol. + Attentuation Vol. = 2.90 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 45.00 Ft Required Treatment Vol. + Attentuation Stage = 41.07 Ft Provided Treatment Vol. + Attentuation Stage = Required Treatment Vol. + Stormsewer Attentuation Vol. = 2.52 Ac-Ft 40.72 Ft Estimated Stormsewer Tailwater Elevation = Maint, Berm Maint, Berm 1:15 1:15 Existing Grnd -----1:4 Additional 20% of Pond R/W = 2.96 AC

URS						
MADE BY:	DTL			DATE:	02/25/14	PROJECT NO.: 240216-4-28-1
CHECKED BY:	DEP			DATE:	05/12/14	DACING Design II
PROJECT:	SR 46 PD&E			POND:	H2	BASIN: Basin H
	Hy	draulic G	arade Lin	e Clearance Calc	ulations	
						<u></u> 1-
1) Estimated tailv	vater elevation in the	e pond (for	preliminary	storm sewer design)	=	40.72 ft
2) Calculation of	post-development a	rea for HG	L cneck			
Baseline	From Station To	o Station	Length (ft)	Roadway width (ft)	Area (ac)	
			į	Total		
	or see Post CN wo	orksheet [8.93	ac		
		•				
3) Lowest autter (elevation in Basin fo	r HGL cher	ck			
o, romon gattor	sio (audit in Edoir ie					
		400+00				
	Baseline Offset (ft)	10.00				
	Elevation (ft)	41.90				
4) Allowable Hea	d Loss = lowest gutt	erel-est	tailwater el	=	1.18	l u
4) / (IIO II abic 1 ica	a 2000 – 10 mest gatt	.01 01 001.	idiiwator or	<u>L</u>	,.	1
Pipe length fro	m Pond to lowest gu	utter point =	=	400 f	t	
6) Rational Metho	od for contributing ru	inoff - O=C	iΑ	7) Estimation of Pipe	: Size	
o) National Metric	od sos contributing re		" (7) 23000000000000000000000000000000000000	, 0.20	
C =				$HL = [4.61*(n^2)*L*(0)]$	Q^2)]/(D^5.33)) + K(V^2)/2g
int. = A =	= 6.50 in/r 8.93 ac	nr .		HL = Allowable Head	t Loss (ft)	0.91 trial
Q =				n = Manning's n	2 2033 (11)	<actual -="" hl="" ok<="" td=""></actual>
				L = Length (ft)		
Manning's n				Q = Runoff (cfs) D = Pipe diameter (ft	<i>I</i>)	
Sum K				K = coefficient for mi	•	
•				V = pipe velocity (fps	s)	
				g = gravitational cons	stant (32.2 ft/s	sec^2)
8) Estimated Pipe	Diameter to satisfy	the conditi	ons =	4.0 f		
				48 i	n	
** Please note:	Seminole County I	Lidar data i	ndicate elev	ations of the existing	roadway with	nin this basin to be
	approximately 39.5	5 ft along S	R 46. Thus	, portions of the prop	osed roadway	profile will need to
	be elevated to obta	ain the lowe	est gutter el	evation used in this H	HGL clearance	e calculation.
	As an option untre	eated storm	water runot	ff from CR 426 could	be conveved	to proposed Pond H2
				roadway improveme		
	hydraulically collec		-			

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin H	MADE BY:	JTL	02/25/14
BASIN ANALYSIS (PRE/POST):	PRE	CHECKED BY:	DEP	04/18/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin H / Pond H3 - Urban					
					
Open Space - Fair Conditions	Astatula (100%)	A	49 •	4.88	239.12
Impervious (Paved parking, roads, etc.)			98 ·	4.05	396.90
Pond footprint	Astatula	A	49 \	1.98	97.02
			TOTALS	10.91	733.04

COMPOSITE CN · 67.19

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) 2) DETERMINE RUNOFF - R $R = (P - 0.2*S)^2 / (P + 0.8*S)$ (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE V(R) P S R Design Storm Frequency Agency (in) (in) (ac-ft) (in) 3 yr / 24 hr 2.25 2.04 • SJRWMD Open Basin 5.60 4.88 10 yr / 24 hr 7.50 • 4.88 3.73 3.39 SJRWMD Open Basin 4.88 4.65 4.22 25 yr / 24 hr SJRWMD Open Basin 8.60 \

URS				
PROJECT TITLE:	SR 46 PD&E			
PROJECT NUMBER:	240216-4-28-1			DATE
BASIN DESIGNATION:	Basin H	MADE BY:	DTL	02/25/14
BASIN ANALYSIS (PRE/POST):	POST	CHECKED BY:	DEF	04/18/14

	SOIL	SOIL		AREA	
LAND-USE DESCRIPTION	NAME	GROUP	CN	(ac)	PRODUCT
Basin H / Pond H3 - Urban					
Open Space - Fair Conditions	Astatula (100%)	٨	49 、	1.49	73.01
Impervious (Paved parking, roads, etc.)			98 \	7.44	729.12
Pond pervious area	Astatula	A	49 、	1.98	97.02
			TOTALS	10.91	899.15

COMPOSITE CN	· 82.42

ESTIMATE OF RUNOFF VOLUME

PROCEDURE TO DETERMINE RUNOFF VOLUME IS BASED ON THE SCS EQUATION AND IS AS FOLLOWS: 1) DETERMINE SOIL STORAGE - S S = (1000 / CN) - 10(inches) $R = (P - 0.2*S)^2 / (P + 0.8*S)$ 2) DETERMINE RUNOFF - R (inches) P = rainfall in inches (acres-feet) CALCULATION TABLE Design Storm Frequency P S R V(R) Agency (in) (in) (in) (ac-ft) SJRWMD Open Basin 3 yr / 24 hr 5.60 • 2.13 3.66 3.33 SJRWMD Open Basin 2.13 5.43 4.94 10 yr / 24 hr 7.50 • 6.48 8.60 • 2.13 5.89 SJRWMD Open Basin 25 yr / 24 hr

URS MADE BY: DTL DATE: 02/25/14 PROJECT NO.: 240216-4-28-1 CHECKED BY: TJET DATE: O4/30/4 CALCULATIONS FOR: SR 46 PD&E POND: H3 BASIN: Basin H Water Quality 10.91 ac Total Basin Area = 7,44 ac Paved Area ≈ Off-Line Dry Retention 0.50 " Over Total Basin Area = 0.45 Ac-Ft 1,25 " Over Paved Area := 0.78 Ac-Ft В. Required PAV for off-line retention = 0.78 Ac-Ft On-Line Dry Retention 1.23 Ac-Ft 0.50 "Over Total Basin Area + Required off-line PAV = 1.23 Ac-Ft Required On-Line Treatment (PAV) = Required Attenuation (Post - Pre) = 1.29 Ac-Ft 3yr / 24hr Required Attenuation (Post - Pre) = 1.55 Ac-Ft 10yr / 24hr 1.67 Ac-Ft 25yr / 24hr Required Attenuation (Post - Pre) = 2.90 Ac-Ft Required Treament Vol. + Attentuation Vol. = 25yr / 24hr SJRWMD Open Basin 2.52 Ac-Ft Required Treatment Vol. + Stormsewer Attentuation Vol. = 3yr / 24hr closed system Stage Storage Calculations AREA AVG Delta Delta ELEV. Description Sum AREA D storage Storage (ft) (ac-ft) (ac) (ac-ft) (ft) (ac) 56.00 Pond R/W 2.48 (1:2 max slope tie down) 47.00 Out Berm 1.98 11.63 1.79 1.00 1,79 46.00 Inside Berm 1.59 9.84 1.55 1.00 1.55 45.00 Provided Treatment Vol. + 1.50 8.30 1.32 4.10 5.39 Attentuation Vol. Required Treatment Vol. + 40.90 1.13 2.90 1.12 0.34 0.38 Attentuation Vol. 40.56 1.10 2.52 Estimated Stormsewer 1.04 1.24 1.30 Tailwater 39.32 Required Treatment Vol. 0.99 1.23 0.93 1.32 1.23 (PAV) 38.00 Bottom 0.87 Required Treatment Vol. + Attentuation Vol. = 2.90 Ac-Ft Provided Treatment Vol. + Attentuation Vol. = 8.30 Ac-Ft Required Treatment Vol. + Attentuation Stage = 45.00 Ft 40.90 Ft Provided Treatment Vol. + Attentuation Stage = Required Treatment Vol. + Stormsewer Attentuation Vol. = 2.52 Ac-Ft Estimated Stormsewer Tailwater Elevation = 40.56 Ft Maint, Berm Maint. Berm <u>1:15</u> 1:15 Existing Grnd Additional 20% of Pond R/W = 2.98 AC

								· · · · · · · · · · · · · · · · · · ·
Ü	MADE BY: CHECKED BY:	DTL DEP SR 46 PD&E			DAT DAT PON	E:	02/25/14 05/12/14 H3	PROJECT NO.: 240216-4-28-1 BASIN: Basin H
	PROJECT:	SK 40 FDQE			FON	. D.	110	DAGIN, DasiiTT
	1) Estimated tailw	/ater elevation in			e Clearance C storm sewer des			40.56 ft
	2) Calculation of	post-developme	nt area for HG	L check				
	Baseline	From Station	To Station	Length (ft)	Roadway width ((ft)	Area (ac)	
						4-1		
		or see Post Cl	l workshoot	8.93	To	taij		
		01 366 7 037 01	Worksheet	0.30	ao			
	3) Lowest gutter e	elevation in Basi	n for HGL che	eck				
		Station Baseline Offset (ft) Elevation (ft)	400+00 CL46 10.00 41.90					
	4) Allowable Head	d Loss = lowest	gutter el - est.	tailwater el			1.34	f t
	5) Pipe length froi			·		10 ft		
	6) Rational Metho	d for contributin	g runoff - Q=0		7) Estimation of			
	C = int. = A == Q =		in/hr ac		HL = $[4.61*(n^2)]$ HL = Allowable F n = Manning's n			+ K(V^2)/2g 1.21 trial <actual -="" hl="" ok<="" td=""></actual>
	Manning's n = Sum K = V =				L = Length (ft) Q = Runoff (cfs) D = Pipe diamete K = coefficient fo V = pipe velocity g = gravitational	r mir (fps)	nor losses)	ec^2)
	8) Estimated Pipe	Diameter to sa	tisfy the condi	tions =		1.0 ft 48 ir	1	
	** Please note:	approximately	39.5 ft along S	SR 46. Thus		oropo	osed roadway	nin this basin to be profile will need to e calculation.
			for the amour					to proposed Pond H3 46 that can not be

PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E.

Project Data

Project Name:

SR 46 PD&E

Simulation Description:

Pond H: Volume below the weir elevation has been used as a slug load

Project Number:

Engineer:

DTL

Supervising Engineer:

Date:

11-18-2013

Aquifer Data

Base Of Aquifer Elevation, [B] (ft datum):

22.36

Water Table Elevation, [WT] (ft datum):

33.36

Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day):

20.00

Preliminary Roadway Soil Survey
PDEE Study for SR46
Ardaman & Assoc., Inc.

Fillable Porosity, [n] (%):

25.00

Information obtained from

Unsaturated Vertical Infiltration Rate, [Iv] (ft/day):

20.0

Maximum Area For Unsaturated Infiltration, [Av] (ft2):

21424.4

Geometry Data

Equivalent Pond Length, [L] (ft):

561.0 1

Equivalent Pond Width, [W] (ft):

38.0

Ground water mound is expected to intersect the pond bottom

Stage vs Area Data

Stage	Area
(ft datum)	(ft²)
38.00 '	21424.4
46.00	63945.9 -
47.00	86076.5

PONDS Version 3.3.0229 **Retention Pond Recovery - Refined Method** Copyright 2008 Devo Seereeram, Ph.D., P.E.

Scenario Input Data

Scenario 1 :: 53578.8 ft3 slug load

Hydrograph Type: Modflow Routing:

Slug Load

Routed with infiltration

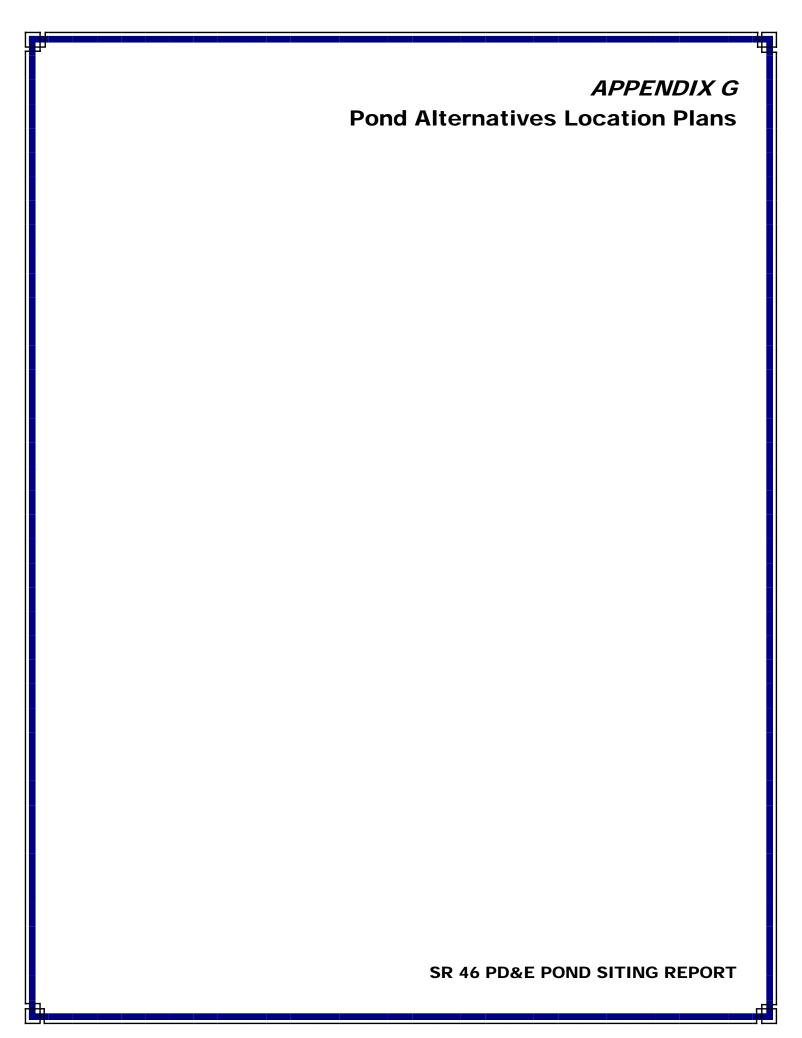
Treatment Volume (ft³)

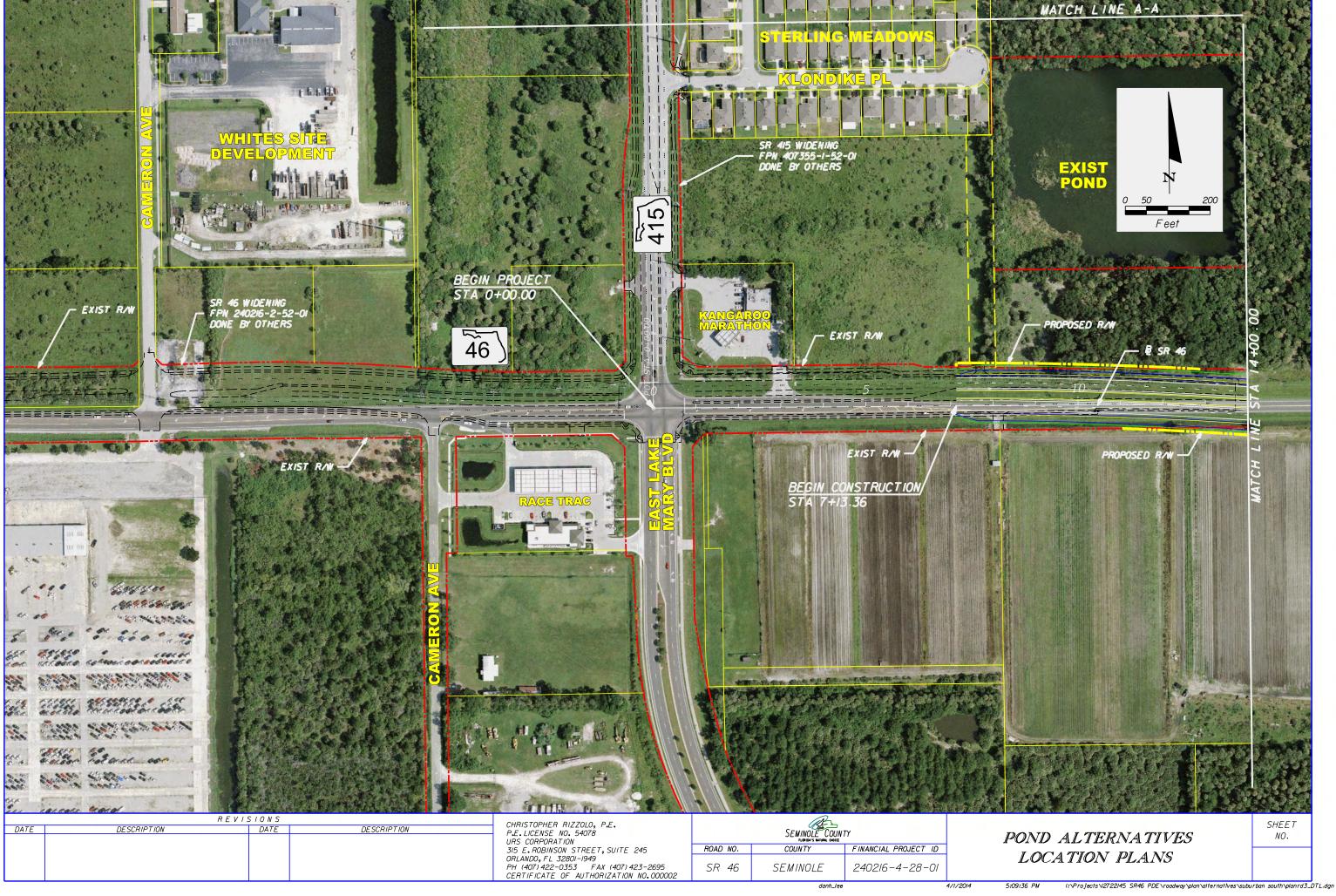
53578.8

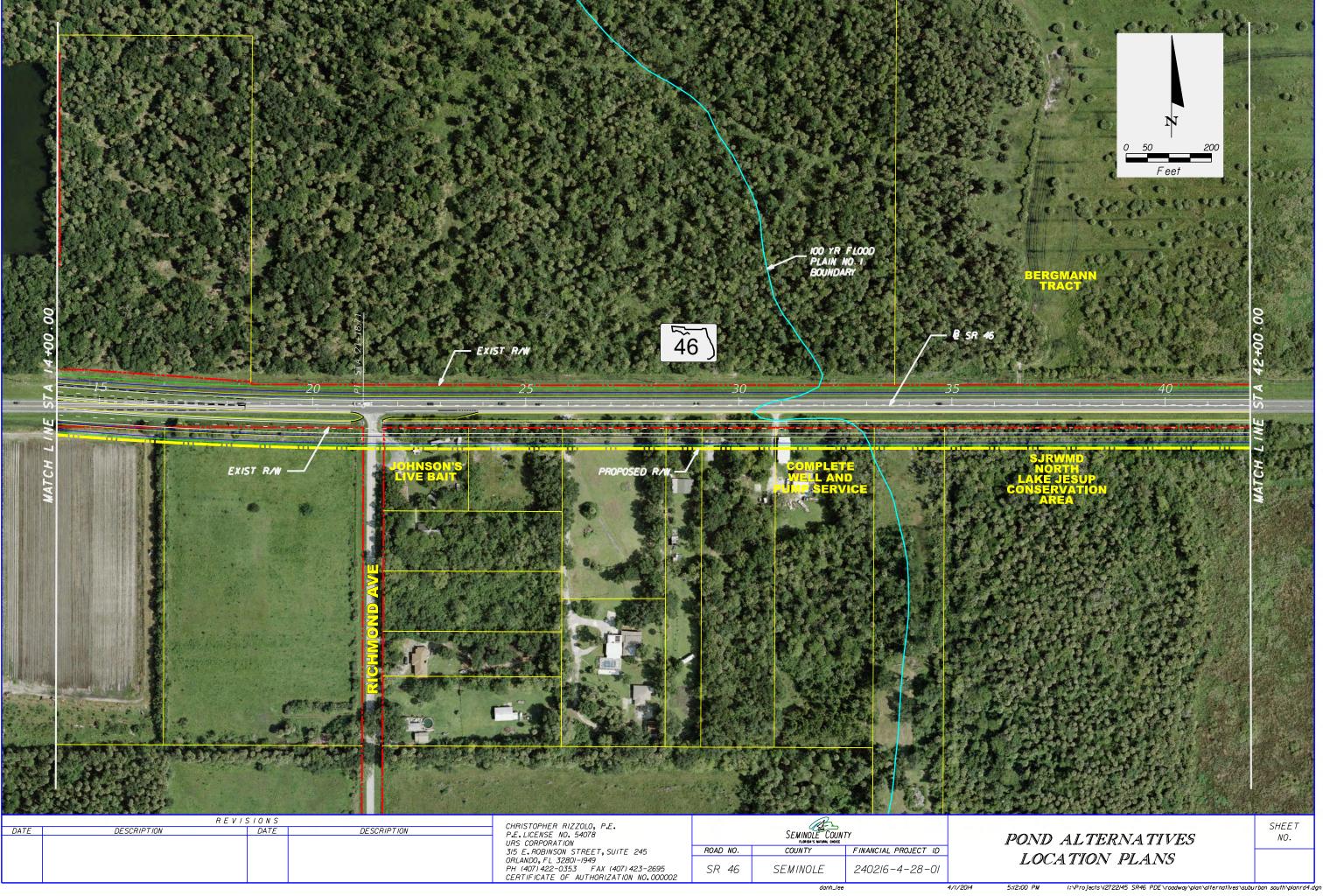
Initial ground water level (ft datum) default, 33.36

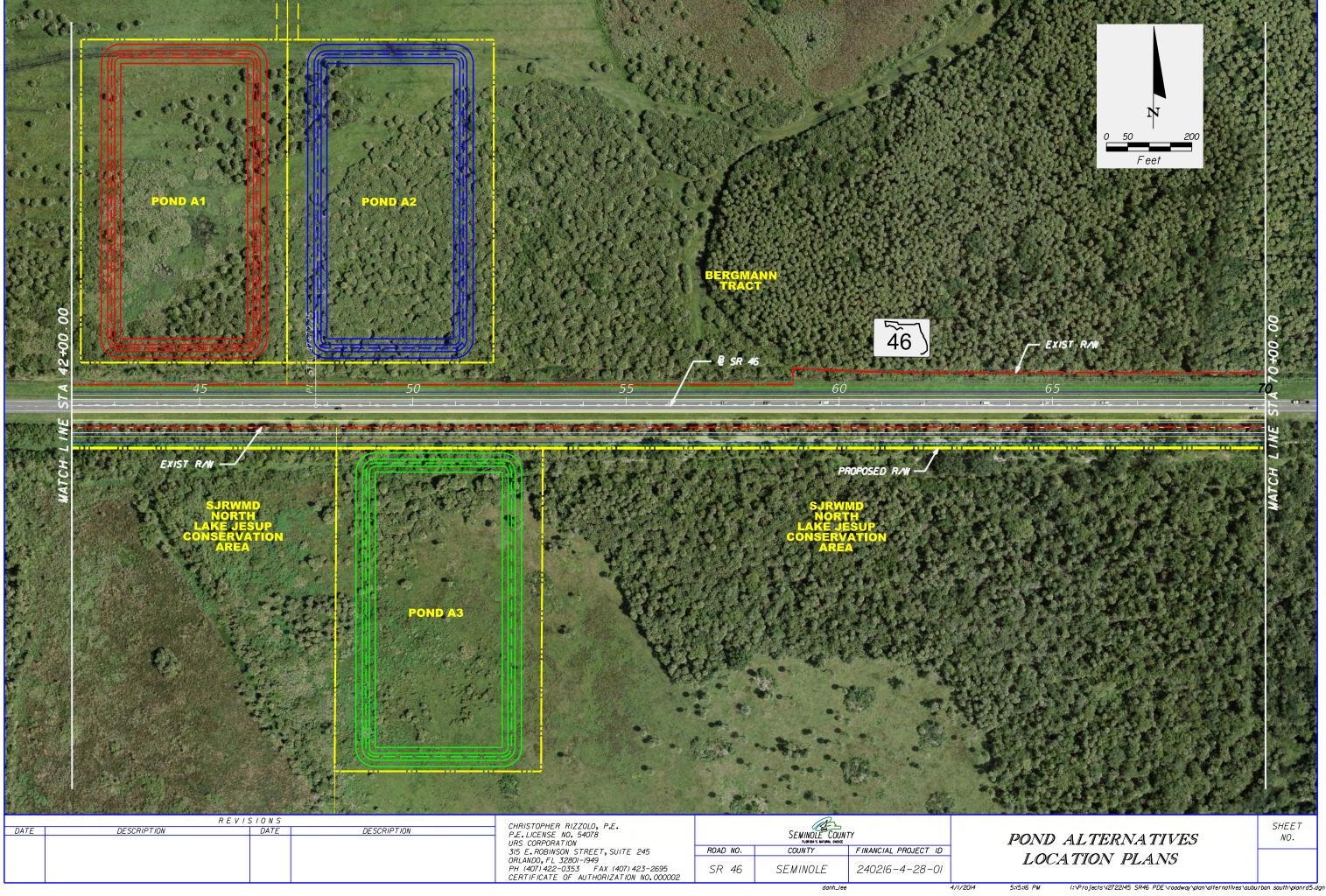
Time After Storm Event (days)	Time After Storm Event (days)
0.100	2.000
0.250	2.500
0.500	3.000
1.000	
1.500	

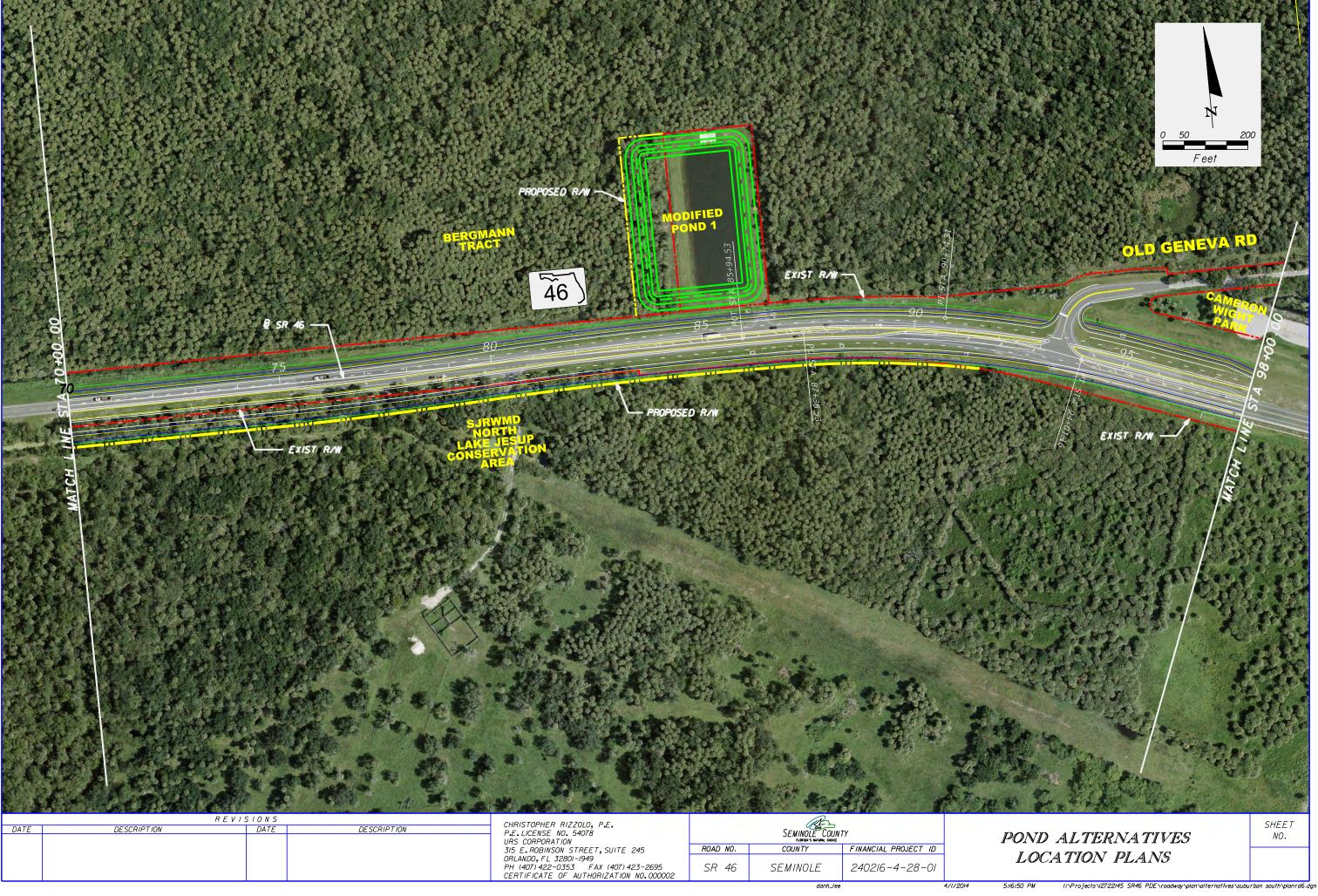
PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E.


Detailed Results :: Scenario 1 :: 53578.8 ft³ slug load


Elapsed Time (hours)	Inflow Rate (ft³/s)	Outside Recharge (fl/day)	Stage Elevation (ft datum)	Infiltration Rate (ft³/s)	Overflow Discharge (ft³/s)	Cumulative Inflow Volume (ft³)	Cumulative Infiltration Volume (ft³)	Cumulative Discharge Volume (ft³)	Flow Type
0.000	8929.8000	0.0000	33.360	0.00000	0.00000	0.0	0.0	0.0	N.A.
0.002	8929.8000	0.0000	40.002	4.95926	0.00000	53578.8	29.8	0.0	U/P
2.400	0.0000	0.0000	38.522	3.19686	0.00000	53578.8	41674.8	0.0	U/S
6.000	0.0000	0.0000	38.098	0.50882	0.00000	53578.8	51464.5	0.0	S
₩ 12.000	0.0000	0.0000	37.182	0.06526	0.00000	53578.8	53578.8	0.0	S
24.000	0.0000	0.0000	36.248	0.00000	0.00000	53578.8	53578.8	0.0	S
36.000	0.0000	0.0000	35.739	0.00000	0.00000	53578.8	53578.8	0.0	S
48.000	0.0000	0.0000	35.413	0.00000	0.00000	53578.8	53578.8	0.0	S
60.000	0.0000	0.0000	35.183	0.00000	0.00000	53578.8	53578.8	0.0	S
72.000	0.0000	0.0000	35.010			53578.8	53578.8	0.0	N.A.


& Recovers entire PAU in 12 hours


WATERSHED	GOTOS	TORMWA	TER TREA	TEMENT A	NALYSIS	Blue Numbers ⇒ Input data Red Numbers ⇒ Calculated or Carry						
SELECT CATC	HMENT CONFIGURATION						VIEW CATCHMEN	· · · · · · · · · · · · · · · · · · ·				
		(0.110-2007)										
CATCHMENT NO.1 CHARAC				•		•	3					
L				Area Acres	non DCIA CN	%DCIA		07750000000000000000000000000000000000				
Pre-development land use:			4		ļ							
with default EMCs			1				EMC(P): Email mg/L	mg/L				
Post-development land use:	Highway 1 N=1,640 18=0,220]		CLICK ON CELL B	ELOW TO SELECT.				
with default EMCs	aget area:	an o		<u> </u>	1	<u> </u>						
							USE DEFAULT C	ONCENTRATIONS				
Pre-development Non DCIA C												
Pre-development DCIA percei					Dra.davalo	nment Annus	Mass Loading - Nitrogens	7 597 ka/year				
Post-development Non DCIA												
Post-development DCIA perce												
	A						· · · · · · · · · · · · · · · · · · ·					
CATCHMENT NO.2 CHARAC		<u>.</u>		<u> </u>			j					
	CLICK ON CELL BELOW TO SEL		Land use	Area Acres	non DCIA CN	%DCIA						
Pre-development land use:												
	CLICK ON CELL BELOW TO SEL						EMC(P): mg/L	mg/L				
Post-development land use:			1				ļ					
		***************************************				<u> </u>	CLICK ON CELL B	ELOW TO SELECT:				
Total pre-development catchn							USE DEFAULT C	ONCENTRATIONS				
			AC									
			3									
	e-development Non DCIA CN: e-development DCIA percentage: sst-development Non DCIA CN: sst-development Non DCIA CN: st-development DCIA percentage: timated Area of BMP (used for rainfall excess not loadings) ATCHMENT NO.3 CHARACTERISTICS:											
			4									
Estimated Area of BMP (used	for rainfall excess not loadings)		AC		Post-devel	opment Annu	ial Mass Loading - Phosphorus	s: kg/year				
CATCHMENT NO.3 CHARAC		1	If mixed	land uses	`		1					
	CLICK ON CELL BELOW TO SEL	.ECT	Land use	Area Acres	non DCIA CN	%DCIA						
Pre-development land use:								mg/L				
	SHED CHARACTERISTICS GO TO STORMWATER TREATERIST IN TREATERIST IN THE CONFIGURATION A Single Catchment VIEW CATCHMENT CONFIGURATION PRE: POST: VIEW CATCHMENT CONFIGURATION VIEW CATCHMENT CONFIGURATION PRE: POST: VIEW CATCHMENT CONFIGURATION VIEW CATCHMENT CONFIGURATION VIEW CATCHMENT CONFIGURATION PRE: POST: VIEW CATCHMENT CONFIGURATION VIEW CATCHMENT											
Post-development land use:												
							CLICK ON CELL B	ELOW TO SELECT:				
Total pre-development catchn							USF DEFAULT C	ONCENTRATIONS				
			AC				V					
Pre-development Non DCIA C			ä									
Pre-development DCIA percer			3%									
Post-development Non DCIA			š									
Post-development DCIA perce												
Estimated Area of BMP (used	for rainfall excess not loadings)		AC		Post-devel	opment Annu	al Mass Loading - Phosphorus	s: kg/year				
CATCHMENT NO.4 CHARAC	TERISTICS:	1	If mixed	land uses	(side calcul	lation)	OVERWRITE DEFAUL	T CONCENTRATIONS:				
1	CLICK ON CELL BELOW TO SEL	ECT	Landass	Area Acres	non DOM CN	%DCIA	PDE.	POST:				
Pre-development land use:	OCION GIVOLEE BELOW TO CLE		Edito 200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
i-re-development land use.	CLICK ON CELL BELOW TO SEL	FCT										
Post-development land use:			+									
Con do voiopinoni idina doo.			Total				CLICK ON CELL B	ELOW TO SELECT:				
Total pre-development catching	nent area:		AC				MCC DCCAIN T.C	ONCENTRATIONS				
Total post-development catch	ment or BMP analysis area:		AC				OSE DEL AULT C	UNCENTRATIONS				
Pre-development Non DCIA C	:N:		Š									
Pre-development DCIA percer			%									
Post-development Non DCIA			\$									
Post-development DCIA perce												
IEstimated Area of BMP (used)	for rainfall excess not loadings)		(IAC		IPost-develo	opment Annu	iai Mass Loading - Phosphorus	s: I lkg/vear l				


Biue Numbers = Calculated or Carryover	GO TO STORMWATER TREATMENT ANALYSIS	error message window for single retention Basin: 6.000]ac	WARNING: THE PROVIDED RETENTION EXCEEDS THE HIGHEST RETENTION		0.000 ac-ft THE HARPER REPORT DATED JUNE 2007), THE SPREADSHEET WILL COMPUTE THE FEEL/SENCY RASED ON THE 4 00 INCHES OF RETENTION		FREEBOARD BETWEEN EOE AND TOB		0.000 % ——OVERFLOW WATER ELEVATION (WEIR CREST)	PREQUIRED TREATMENT VOLUME (RTV)	% SAFETY GRATE —— EMERGENCY OVERFLOW ***********************************	% — — — — — — — — — — — — — — — — — — —	0.000 lin	SY GRAPH:	PIPE RTV RECOVERY BY SOIL INFILTRATION	eatment efficiency of SEASONAL HIGH GROUND WATER TABLE (SHGWT) Gebit for a single	rates that there is a bd. Thus evaluations bensatory freatment	TYPICAL CROSS SECTION OF A "DRY" RETENTION SYSTEM	· · · · · · · · · · · · · · · · · · ·	Source of Graphic: draft STORMWATER QUALITY APPLICANT'S HANDBOOK dated March	Catchment 4		0.000 0 000 0
	Basin H	Catchment 2 Catchment 3 Catchme 0.000 0.000		000.0	0.000 0.000	ed for additional removal efficiencies in a series of BMPs) :			0.000 0.000	0.000 0.000			0.000 0.000	NOTE FOR TREATEMENT EFFICIENCY GRAPH:		The purpose of this graph is to help illustrate the treatment efficiency of the retention system as the function of retention depth for a single	BMP and in a single catchment. The graph illustrates that there is a diminished return as the retention depth is increased. Thus evaluations of other alternatives in "treatment trains" and compensatory treatment.	should be considered.		View Media Mixes	Catchment 1 Catchment 2 Catchment 3	0000	0.0 000.0 000.0
RETENTION BASIN:	RETENTION BASIN SERVING:	Watershed area: Catchment 1 8.930	Required Treatment Eff (Nitrogen):	shed to meet required efficiency:		RETENTION BASIN FOR MULTIPLE TREATMENT SYSTEMS (use only if there is a need		Provided retention depth (inches over the watershed area):		Provided treatment efficiency (Phosphorus): 98.943		osphorus):	Remaining retention depth needed: 0.000	■ Efficiency Curve: ★ System Efficiency (N \$ P) CAT 1: ■ System Efficiency (N \$ P) CAT 2: ◆ System Efficiency (N \$ P) CAT 3: 100		000		02 00 00 00 00 00 00 00 00 00 00 00 00 0	0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00	Retention depth (inch):			Average Introgen concentration in the miter eminer, emerging groundwater in might

