

S.R. 535 CORRIDOR PLANNING STUDY FM #437174-1 and #437175-1

FROM U.S. 192 TO INTERSTATE 4

Title VI

The Florida Department of Transportation complies with various nondiscrimination laws and regulations, including Title VI of the Civil Rights Act of 1964 and the Americans with Disabilities Act (ADA).

Public participation is solicited without regard to race, color, national origin, age, sex, religion, disability or family status. Persons wishing to express their concerns relative to FDOT compliance with Title VI may do so by contacting either:

District 5 Office Florida Department of Transportation

Jennifer Smith **District 5 Title VI Coordinator 719 South Woodland Boulevard DeLand, FL 32720** (386) 943-5367 Jennifer.Smith2@dot.state.fl.us

Central Office Florida Department of Transportation

Jacqueline Paramore State Title VI Coordinator 605 Suwannee Street, MS 65 **Tallahassee, FL 32399-0450** (850) 414-4753 Jacqueline.Paramore@dot.state.fl.us

S.R. 535 CORRIDOR PLANNING STUDY FM #437174-1 and #437175-1

FROM U.S. 192 TO INTERSTATE 4

Why You Are Here:

- To participate in the Corridor Planning Study process
- To review the future build alternatives along S.R. 535
- To provide your thoughts, concerns, and comments regarding the project

Design, Right-of-Way, and Construction are not funded

Stay Informed by:

By visiting our website www.cflroads.com

By contacting Ms. Heather Garcia Florida Department of Transportation

> 719 S. Woodland Boulevard DeLand, Fl. 32720 (386) 943-5077 heather.garcia@dot.state.fl.us

Where We Are:

- Participate in open discussion with the project team
- Ask questions about specific aspects of the project
- Fill out a comment form with your input
- Visit the project website at www.cflroads.com and search
 - by FM number: FM #437174-1 and #437175-1

2016

TASK	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
Begin Study	\star																						
Existing Conditions Analysis																							
Project Visioning Team Kick-Off Meeting			\star																				
Future Conditions Analysis / Purpose & Need																							
Project Visioning Team Meeting #1									\star														
Existing Conditions Public Meeting											\star												
Alternatives Development																							
Project Visioning Team Meeting #2																				\star			
Future Alternatives Public Meeting																						\star	
Project Wrap Up																							

How Can You Get Involved?

201	7
-----	---

Aerial Image Fly Date: March 2016

Study Corridor

Study Corridor

⇔ ふ SR 535) ネ 🖨

County Line

FM #437174-1 and #437175-1

TYPICAL SECTION KEY MAP

Study Corridor
 County Line

Figure No. 2

S.R. 535 from Kyngs Heath Road to Vistana Drive

Widen Travel Lanes to Outside

See Location "A" on Figure 1 - Typical Section Key Map

Existing

- Four 12' travel lanes; two in each direction
- 4' paved outside shoulders

• 52' median

Alternative 1

- Add one 12' travel lane in each direction to the outside of existing lanes
- Widen outside shoulders to 5'
- Add 4' inside shoulders
- Provide 12' shared-use path near the Right-of-Way line

Alternative 1: Shared Use Path Option - Rural

Alternative 2

- Add one 12' travel lane in each direction to the outside of existing lanes
- Provide 7' buffered bicycle lanes outside of travel lanes
- Add 4' inside shoulders
- Provide 8'-12' shared-use path near the Right-of-Way line

Alternative 2: Buffered Bike Lane Option - Rural

Alternative 3

- Add one 12' travel lane in each direction to the outside of existing lanes
- Provide 7' buffered bicycle lanes outside of travel lanes
- Add 4' inside shoulders
- Add curb and gutter to both inside and outside shoulders
- Provide 8'-12' shared-use path near the Right-of-Way line

Alternative 3: Buffered Bike Lane Option - Urban

FM #437174-1 and #437175-1

Figure No. 3

S.R. 535 from Kyngs Heath Road to Vistana Drive

Widen Travel Lanes to Inside

See Location "A" on Figure 1 - Typical Section Key Map

Existing

- Four 12' travel lanes; two in each direction
- 4' paved outside shoulders
- 52' median

Alternative 1

- Add one 12' travel lane in each direction to the inside of existing lanes
- Widen outside shoulders to 5'
- Add 4' inside shoulders
- Add curb and gutter to inside shoulders
- Provide 12' shared-use path near the Right-of-Way line

Alternative 2

- Add one 12' travel lane in each direction to the inside of existing lanes
- Provide 7' buffered bicycle lanes outside of travel lanes
- Add 4' inside shoulders
- Add curb and gutter to inside shoulders
- Provide 8'-12' shared-use path near the Right-of-Way line

Alternative 1: Shared Use Path Option - Rural

Alternative 2: Buffered Bike Lane Option - Rural

Alternative 3

- Add one 12' travel lane in each direction to the inside of existing lanes
- Provide 7' buffered bicycle lanes outside of travel lanes
- Add 4' inside shoulders
- Add curb and gutter to both inside and outside shoulders
- Provide 8'-12' shared-use path near the Right-of-Way line

Alternative 3: Buffered Bike Lane Option - Urban

Figure No. 4 S.R. 535 from Vistana Drive to Interstate 4

See Location "B" on Figure 1 - Typical Section Key Map

Existing

- Six 12' travel lanes; three in each direction
- Curb and gutter on both inside and outside shoulders
- 5' sidewalk approximately 5' from roadway

Existing

Alternative 1

- Narrow lane widths to 11'
- Rebuild curb and gutter on outside shoulder
- Widen sidewalk to be a 12' shared-use path

Alternative 1: Shared Use Path Option

Alternative 2

- Narrow lane widths to 11'
- Provide 7' buffered bicycle lanes outside of travel lanes
- Rebuild curb and gutter on outside shoulder
- Widen sidewalk to be a 9' shared-use path

Alternative 2: Buffered Bike Lane Option

Alternative 3

- Narrow lane widths to 11'
- Narrow median to 22' from 24' and rebuild inside shoulder curb and gutter
- Provide 7' buffered bicycle lanes outside of travel lanes
- Rebuild curb and gutter on outside shoulder
- Widen sidewalk to be a 10' shared-use path

Alternative 3: Buffered Bike Lane and Shared Use Path Option

FM #437174-1 and #437175-1

Figure No. 5 Intersection Improvements

Figure No. 6 **Restricted Crossing U-Turn (RCUT) Information**

AN INNOVATIVE, PROVEN SOLUTION FOR IMPROVING SAFETY AND MOBILITY AT SIGNALIZED AND UNSIGNALIZED INTERSECTIONS

What is a Restricted Crossing **U-turn (RCUT)?**

- The Restricted Crossing U-Turn (RCUT) is an innovative intersection design that improves safety and operations by changing how minor road traffic crosses or turns left at a major road.
- At an RCUT, drivers stopped at the minor road waiting to cross or turn left no longer must navigate a complex intersection of two directions or traffic often traveling at a high speed.
- Instead, all minor road traffic makes a right turn followed by a U-turn at a designated location either signalized or unsignalized—to continue in the desired direction.
- The RCUT is suitable for a wide variety of locations and circumstances, such as a corridor treatment along signalized routes to minimize travel times while maximizing capacity and managing speed.
- RCUTs work well when consistently used at intersections along a corridor, but they also can be used effectively at individual intersections.

Improving Safety and **Operations**

 Comparing a conventional four-leg intersection to an equivalent RCUT design, and accounting for the U-turn locations on both sides of the main intersection, the total number of conflict points is reduced from 32 to 18—a nearly 50 percent reduction.

- travel.

Meeting the Needs of the Community

- bicycles.

FM #437174-1 and #437175-1

• The RCUT design improves overall roadway operations, even when considering the additional distance traffic entering from the minor road must

• While RCUTs can cause a slight increase in travel time during periods of low traffic volumes, they have been shown to decrease delay during periods of higher volumes, reducing the time it takes to clear an intersection and resume normal travel speeds.

 Access to local businesses and commercial areas can be maintained because the U-Turns accommodate all movements.

• When signalized, the RCUT provides great flexibility in traffic signal timing to accommodate unbalanced traffic flow that may result from commuter patterns or retail developments.

• This includes pedestrian crossings that are accessible to all users, and when signalized, phases that accommodate both pedestrians and

• The channelization used in the RCUT design can serve as effective refuge islands for pedestrian crossings and/or as bicycle queuing areas.

RCUT Intersection in Troy, Michigan

RCUT Example from Vistana Center Drive to North of Meadow Creek Drive

Representative diagram for illustrative purposes only

U.S. Department of Transportation Federal Highway Administration

* Information presented on this board originates from the FHWA RCUT Intersection Brochure but has been modified by Kittelson & Associates, Inc. for the purposes of this meeting.

Figure No. 7 Potential RCUT Intersection Lane Configurations

Figure No. 8 **Displaced Left Turn (DLT) Information**

SIGNALIZED INTERSECTIONS

What is a Displaced Left Turn **Intersection?**

- The Displaced Left Turn (DLT) Intersection implements unopposed left turns at intersections by moving traffic over to the other side of the road in advance.
- Traffic crosses opposing through lanes at a separate signalized intersection before the main intersection, entering a parallel left turn lane separated from opposing lanes.
- At the main intersection, left turning and through traffic move simultaneously, increasing efficiency and safety by reducing conflict.
- The DLT is best-suited to intersections with moderate to high overall traffic volumes, and especially to those with very high or unbalanced left turn volumes.
- It can be a competitive alternative to a full, gradeseparated interchange.

Safety and Operational Benefits

• The DLT design reduces the total number and overall severity of vehicle-to-vehicle conflict points. Conflict points decrease from 32 to 28 when a conventional intersection is converted to a full DLT.

A Cost-Effective Way to Meet Community Needs

- its users.
- accordingly.

FM #437174-1 and #437175-1

AN INNOVATIVE, PROVEN SOLUTION FOR IMPROVING SAFETY AND MOBILITY AT

• A study by FHWA using traffic models to compare performance between DLT intersections and equivalent conventional signalized intersections showed the following:

» A partial DLT with crossovers on only select intersection approaches increased throughput by about 20 percent and significantly reduced delay by up to 30-40 percent.

 DLT intersections have been constructed in several states, including Colorado, Louisiana, Maryland, Missouri, New York, Ohio, Texas, and Utah.

The DLT design is flexible and can be tailored to meet the needs of a particular intersection and all of

• Provisions for walking and biking must be considered throughout the project development process, with the needs of pedestrians and bicycles shaping the overall design of the DLT

• This includes pedestrian crossings that are accessible to all users, and traffic signal phases that accommodate both pedestrians and bicycles.

* Information presented on this board originates from the FHWA DLT Intersection Brochure but has been modified by Kittelson & Associates, Inc. for the purposes of this meeting.

